Hey there!:
Molar mass N₂ = 28.0134 g/mol
28.0134 g ------------------- 22.4 L (at STP )
mass N₂ -------------------- 50.0 L
mass N₂ = 50.0 x 28.0134 / 22.4
mass N₂ = 1400.67 / 22.4
mass N₂ = 62.529 g
Hope this helps!
Moles of phosphoric acid would be needed : 0.833
<h3>Further explanation</h3>
Given
15 grams of water
Required
moles of phosphoric acid
Solution
Reaction(decomposition) :
H3PO4 -> H2O + HPO3
mol water (H2O :
= mass : MW
= 15 g : 18 g/mol
= 0.833
From the equation, mol ratio H3PO4 = mol H2O = 1 : 1, so mol H3PO4 = 0.833
Answer:
.08 L or 80 ml
Explanation:
Use the equation V/t = V/t.
.04L / 150K = V / 300K
.04 / 150 * 300 = V
.08 L or 80 ml
Your body uses it to build and repair tissue. You need it to make enzymes, hormones, and other body chemicals. It is an important building block of bones, muscles, cartilage, skin, and blood. Along with fat and carbohydrates.
Answer: The value of the equilibrium constant Kc for this reaction is 3.72
Explanation:
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium concentration of
= 
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as
For the given chemical reaction:
The expression for
is written as:
Thus the value of the equilibrium constant Kc for this reaction is 3.72