The total work <em>W</em> done by the spring on the object as it pushes the object from 6 cm from equilibrium to 1.9 cm from equilibrium is
<em>W</em> = 1/2 (19.3 N/m) ((0.060 m)² - (0.019 m)²) ≈ 0.031 J
That is,
• the spring would perform 1/2 (19.3 N/m) (0.060 m)² ≈ 0.035 J by pushing the object from the 6 cm position to the equilibrium point
• the spring would perform 1/2 (19.3 N/m) (0.019 m)² ≈ 0.0035 J by pushing the object from the 1.9 cm position to equilbrium
so the work done in pushing the object from the 6 cm position to the 1.9 cm position is the difference between these.
By the work-energy theorem,
<em>W</em> = ∆<em>K</em> = <em>K</em>
where <em>K</em> is the kinetic energy of the object at the 1.9 cm position. Initial kinetic energy is zero because the object starts at rest. So
<em>W</em> = 1/2 <em>mv</em> ²
where <em>m</em> is the mass of the object and <em>v</em> is the speed you want to find. Solving for <em>v</em>, you get
<em>v</em> = √(2<em>W</em>/<em>m</em>) ≈ 0.46 m/s
Answer:
c
Explanation:
Earth has a gravitational force which pulls objects towards the center of the earth.
We don't know anything about the amount of distance it travels, but that's okay. The only equation we need here is
velocity(final) = velocity(initial) + acceleration * time
vf = vi + (a * t)
The ball is dropped from rest, so vi = 0 m/s.
We want it so that the ball hits the ground with a final velocity of 60 m/s, so vf = 60 m/s.
We are given the acceleration due to gravity, a = 9.8 m/s^2.
We are solving for the time, t = ?.
Now we just plug in the values.
vf = vi + (a * t)
60 m/s = 0 m/s + (9.8 m/s^2)*(t)
60 = 9.8t
60 / 9.8 = t
t = 6.122 s
Hopefully this is the right answer.