Answer:
a = 1.152s
b = 0.817 m
c = 7.29m/s
Explanation: let the following
From the first equation of linear motion
V = u+at..........1
parameters be represented as :
t = Time taken
v = Final velocity
a = Acceleration due to gravity = 9.8m/s²
u = Initial velocity = 4 m/s
s = Displacement
V = 0
Substitute the values into equation 1
0 = 4-9.8(t)
-4 = -9.8t
t = 4/9.8
t = 0.408s
From : s = ut+1/2at^2.........2
S = 4×0.408+0.5(-9.8)×0.408^2
S= 1.632-4.9(0.166)
S = 1.632-0.815
S = 0.817m
Her highest height above the board is 0.817 m
Total height she would fall is 0.817+1.90 = 2.717 m
From equation 2
s = ut+1/2at^2
2.717 m = 0t+0.5(9.8)t^2
2.717 m = 0+4.9t^2
2.717 m = 4.9t^2
2.717/4.9 = t^2
0.554 =t^2
t =√0.554
t = 0.744s
Hence, her feet were in the air for 0.744+0.408seconds
= 1.152s
Also recall from equation 1
V= u+at
V = 0+9.8(0.744)
V = 7.29m/s
Hence, the velocity when she hits the water is 7.29m/s
Finally,
a = 1.152s
b = 0.817 m
c = 7.29m/s
The ration of output work to input work expressed as a percentage is called <u>Efficiency</u>.
Answer:
55.96kJ
Explanation:
Energy = mass of diethyl ether × enthalpy of vaporization of diethyl ether
Volume (v) = 200mL, density (d) = 0.7138g/mL
Mass = d × v = 0.7138 × 200 = 142.76g
Enthalpy of vaporization of diethyl ether = 29kJ/mol
MW of diethyl ether (C2H5)2O = 74g/mol
Enthalpy in kJ/g = 29kJ/mol ÷ 74g/mol = 0.392kJ/g
Energy = 142.76g × 0.392kJ/g = 55.96kJ
Answer:
y = 17 m
Explanation:
For this projectile launch exercise, let's write the equation of position
x = v₀ₓ t
y =
t - ½ g t²
let's substitute
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
the maximum height the ball can reach where the vertical velocity is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
0 = v₀ sin θ - 9.8 t
Let's write our system of equations
45 = v₀ cos θ t
10 = v₀ sin θ t - ½ 9.8 t²
0 = v₀ sin θ - 9.8 t
We have a system of three equations with three unknowns for which it can be solved.
Let's use the last two
v₀ sin θ = 9.8 t
we substitute
10 = (9.8 t) t - ½ 9.8 t2
10 = ½ 9.8 t2
10 = 4.9 t2
t = √ (10 / 4.9)
t = 1,429 s
Now let's use the first equation and the last one
45 = v₀ cos θ t
0 = v₀ sin θ - 9.8 t
9.8 t = v₀ sin θ
45 / t = v₀ cos θ
we divide
9.8t / (45 / t) = tan θ
tan θ = 9.8 t² / 45
θ = tan⁻¹ ( 9.8 t² / 45
)
θ = tan⁻¹ (0.4447)
θ = 24º
Now we can calculate the maximum height
v_y² =
- 2 g y
vy = 0
y = v_{oy}^2 / 2g
y = (20 sin 24)²/2 9.8
y = 3,376 m
the other angle that gives the same result is
θ‘= 90 - θ
θ' = 90 -24
θ'= 66'
for this angle the maximum height is
y = v_{oy}^2 / 2g
y = (20 sin 66)²/2 9.8
y = 17 m
thisis the correct