Time taken by proton to complete one complete circular orbit= 7.28 x 10⁻⁸ s
Explanation:
For proton, the centripetal force required for circular motion is provided by the magnetic force,
so Fm= Fc
q v B = m v²/r
m= mass of charged particle
v= velocity
B =magnetic field
q= charge
r= radius of circular path
v= q B r/m
now v= r ω
ω= angular velocity
ω r = q B r /m
ω=q B /m
now ω= 2π/T where T =time period
so 2π/T=q B/m
T= 2 πm/q B
T= 2π (1.67 x 10⁻²⁷)/ [( 1.6 x 10⁻¹⁹)* (0.9)]
T= 7.28 x 10⁻⁸ s
Answer:
The second dart leaves the gun two times as faster than the first one.
Explanation:
Assuming no energy loss during the spring-dart energy transfer, we have by the conservation of energy principle

Given an arbitrary
and its double,
, launch velocities are

Answer:
Al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
Explanation:
Dado que una barra de aluminio que está a 78 grados centígrados entra en contacto con una barra de cobre de la misma longitud y área que esta a 28 grados centígrados, y posteriormente se lleva acabo la transferencia de energía entre ambas barras llegando a su equilibrio térmico, para determinar la temperatura a la que ambas barras llegarán se debe realizar el siguiente cálculo:
(78 + 28) / 2 = X
106 / 2 = X
53 = X
Por lo tanto, al llegar a su equilibrio térmico ambas barran tendrán una temperatura de 53 grados centígrados.
Atoms begin to gravitate together to form a center
The work done by the battery is equal to the charge transferred during the process times the potential difference between the two terminals of the battery:

where q is the charge and

is the potential difference.
In our problem, the work done is W=39 J while the potential difference of the battery is

, so we can find the charge transferred by the battery: