Answer:
θ = 13.16 °
Explanation:
Lets take mass of child = m
Initial velocity ,u= 1.1 m/s
Final velocity ,v=3.7 m/s
d= 22.5 m
The force due to gravity along the incline plane = m g sinθ
The friction force = (m g)/5
Now from work power energy
We know that
work done by all forces = change in kinetic energy
( m g sinθ - (m g)/5 ) d = 1/2 m v² - 1/2 m u²
(2 g sinθ - ( 2 g)/5 ) d = v² - u²
take g = 10 m/s²
(20 sinθ - ( 20)/5 ) 22.5 = 3.7² - 1.1²
20 sinθ - 4 =12.48/22.5
θ = 13.16 °
Answer:
The series A test tube has some left amount of glucose left in it.
Explanation:
Let's assume that a fixed amount of glucose is synthesized, for the fixed quantity the bacteria produced in A and B be x and y respectively,
Therefore, the condition on x and y is, y > x as the no. of bacteria present in B is greater.
As a result B would require a greater amount of energy for its functioning, these energy would be derived from the already fixed amount of glucose present.
A test tube would also require the energy for its x number of bacteria, but it is less than that of B.
Therefore, there would be some unused glucose left in Test Tube Series A which has unused energy.
The answer is 2.14 kW.
You get this by dividing the outside number (110) by all the resistors and then adding the values together.
I believe it is A, if I am remembering correctly from my last semester class.
Answer:
334.314 (kJ)
Explanation:
1) the formula for the required energy is: Q=c*m(Bp-t), where c - 4100 J/kg*C; m - 0.9 kg; Bp - 100.6 C; t - 10 C.
2) according to the formula above:
Q=4100*0.9*(100.6-10)=41*9*906=334314 (J).