Answer:
1.25kg
Explanation:
Simply multiply volume and density together
A negative ion is a atom that has an extra electron, but the same # of protons
The amount of gravitational potential energy acquired by the rock is equal to:

where
m is the mass of the rock
g is the gravitational acceleration

is the increase in height of the rock
Substituting the data of the problem, we find

So, Natalie gave 220.7 J of energy to the rock.
Answer:
F_A = 8 F_B
Explanation:
The force exerted by the planet on each moon is given by the law of universal gravitation
F = 
where M is the mass of the planet, m the mass of the moon and r the distance between its centers
let's apply this equation to our case
Moon A
the distance between the planet and the moon A is r and the mass of the moon is 2m
F_A = G \frac{2m M}{r^{2} }
Moon B
F_B = G \frac{m M}{(2r)^{2} }
F_B = G \frac{m M}{4 r^{2} }
the relationship between these forces is
F_B / F_A =
= 1/8
F_A = 8 F_B
Answer:
C. Heat and Pressure
Explanation:
The arrow which is labeled A points from igneous rock to metamorphic rock.
There are three types of Rocks:
1. Igneous Rock
2. Metamorphic Rock
3. Sedimentary Rock
Rock cycle:
Rock cycle is the process that describes the transition between these three types of rocks. Each type has its own form and its own equilibrium condition. The rock type alters when it is pushed out of its equilibrium conditions.
Transition of Igneous rock to Metamorphic rock:
Igneous rock forms when magma cools down. The transition of Igneous Rock to Metamorphic Rock is a result of a process called Metamorphism. Metamorphism is the alteration in the structure of rock as a result of certain heat and pressure conditions. Inside Earth heat comes from pressure. Heat with pressure does not melt the rock but it bakes the rock. Baking is not melting but it changes the shape of the rock while it is still solid. It actually forms crystals. Because the rock changes its structure, it is called Metamorphic Rock.