Answer: 211.059 m
Explanation:
We have the following data:
The angle at which the ball leaves the bat
The initial velocity of the ball
The acceleration due gravity
We need to find how far (horizontally) the ball travels in the air: 
Firstly we need to know this velocity has two components:
<u>Horizontally:</u>
(1)
(2)
<u>Vertically:</u>
(3)
(4)
On the other hand, when we talk about parabolic movement (as in this situation) the ball reaches its maximum height just in the middle of this parabola, when
and the time
is half the time it takes the complete parabolic path.
So, if we use the following equation, we will find
:
(5)
Isolating
:
(6)
(7)
(8)
Now that we have the time it takes to the ball to travel half of is path, we can find the total time
it takes the complete parabolic path, which is twice
:
(9)
With this result in mind, we can finally calculate how far the ball travels in the air:
(10)
Substituting (2) and (9) in (10):
(11)
Finally:
Answer:
Q = 913.9 gpm
Explanation:
The Hazen Williams equation can be written as follows:

where,
P = Friction Loss per foot of pipe =
= 4 x 10⁻⁴
Q = Flow Rate in gallon/min (gpm) = ?
d = pipe diameter in inches = (400 mm)(0.0393701 in/1 mm) = 15.75 in
C = roughness coefficient = 100
Therefore,

<u>Q = 913.9 gpm</u>
Answer:
the velocity is zero, the acceleration is directed downward, and the force of gravity acting on the ball is directed downward
Explanation:
Is this exercise in kinematics
v = v₀ - g t
where g is the acceleration of the ball, which is created by the attraction of the ball to the Earth.
At the highest point
velocity must be zero.
The acceleration depends on the Earth therefore it is constant at this point and with a downward direction.
The force of the earth on the ball is towards the center of the Earth, that is, down
all other alternatives are wrong
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Kinetic Energy means <span>energy that a body possesses by virtue of being in motion. I hope im not too late</span>