Temperature difference; voltage difference
Answer:
The final size is approximately equal to the initial size due to a very small relative increase of
in its size
Solution:
As per the question:
The energy of the proton beam, E = 250 GeV =
Distance covered by photon, d = 1 km = 1000 m
Mass of proton, 
The initial size of the wave packet, 
Now,
This is relativistic in nature
The rest mass energy associated with the proton is given by:


This energy of proton is 
Thus the speed of the proton, v
Now, the time taken to cover 1 km = 1000 m of the distance:
T = 
T = 
Now, in accordance to the dispersion factor;


Thus the increase in wave packet's width is relatively quite small.
Hence, we can say that:

where
= final width
The x-component of a vector are < 106.6, 43.07 >
Depending on the angle we are provided, the x-component of a vector can either be cos or sin. Cos always corresponds to the right triangle's side that contacts the specified angle.
If a vector v with magnitude ||v|| makes an angle θ with the positive x-axis then,
v = ||v|| cos θi + ||v|| sin θj
= < ||v|| cos θ , ||v|| sin θ >
Magnitude p = 115 km
Angle = 22°
p = ||p|| < cos θ, sin θ >
p = 115 < cos 22°, sin 22° >
p = 115 < 0.927, 0.3746 >
p = < 106.6, 43.07 >
Therefore, the x-component of a vector are < 106.6, 43.07 >
Learn more about vectors here:
brainly.com/question/8043832
#SPJ1
Answer:
true cuase it is true its not false
Answer:
1989.6Kg
Explanation:
The computation of the mass of the other body is given below:
As we know that
F = G × m1 × m2 ÷ r²
Here the G would have the constant value i.e. 6.67 × 10^-11Nm² / kg².
Now
6.5 × 10^-7N = 6.67 × 10^-11Nm² / kg² × 60Kg × m2 / (3.5m) ²
m2 = (F × r²) / (G × m1)
m2 = (6.5 × 10^-7N × (3.5m) ²) ÷ (6.67 × 10^-11Nm² / kg² × 60Kg)
= 1989.6Kg