The correct answer is: Individuals that produce chemical compounds are better protected from herbivores and are able to produce more young than individuals that do not produce the compounds.
Natural selection acts on variations-differences in phenotype that exist among individuals. If a certain trait contribute more to survival and reproduction (individuals with that variant survive more than individuals with other variant), natural selection will favor that trait. In this case, production of chemical compounds is favored over non-producing trait.
So I don’t see answer choices here, but your answer is 50% of the offspring will be homozygous dominant with RR, and 100% of them will carry a homozygous dominant gene of Rr
If you take the two sets and put them into a punnett square, it would look like this (image attached):
When the two sets of alleles are crossed, you would end up with half of your pairs being fully dominant (RR), and the other half being dominant while containing a recessive gene (Rr). Since there’s only one recessive gene in these pairs, it gets overridden and the pair itself is dominant.
So your answer is 50% will be homozygous dominant with RR!
Answer:
Mitochondria.
Explanation:
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder in which the neuron died due to mutation in superoxide dismutase 1 gene. This disease is also known as Lou Gehrig's disease.
Mitochondria structure is disorganized in ALS. The ubiquitin protein mutation leads to the malfunctioning of mitochondria and misfolded proteins are made in the mitochondria.
Thus, the correct answer is option (a).
<span>They bind messenger RNA and transfer RNA to synthesize polypeptides and proteins.</span>