Answer: At 34°c
Explanation:
Using The Arrhenius Equation:
k = Ae − Ea/RT
k represents rate constant
A represents frequency factor and is constant
R represents gas constant which is = 8.31J/K/mol
Ea represents the activation energy
T represents the absolute temperature.
By taking the natural log of both sides,
ln k = ln A- Ea/RT
Reactions at temperatures T1 and T2 can be written as;
ln k1= ln A− Ea/RT1
ln k2= ln A− Ea/RT2
Therefore,
ln(k1/k2) = −Ea/RT1 + Ea/RT2
Since k2=2k1 this becomes:
ln(1/2) = Ea/R*[1/T2 − 1/T1]
Theefore,
-0.693 = 37.2 x 10^3/8.31 * [ 1/T2 - 1/293]
1/T2 - 1/293 = -1.55 x 10^-4
1/T2 = -1.55 x 10^-4 + 34.13x 10^-4
1/T2 = 32.58 x 10^-4
Therefore T2 = 307K
T2 = 307 - 273 = 34 °c
The solution for this problem is computed by through this formula, F = kQq / d²Plugging in the given values above, we can now compute for the answer.
F = 8.98755e9N·m²/C² * -(7e-6C)² / (0.03m)² = -489N, the negative sign denotes attraction.
I think it has 11 but i don't really know for sure.Correct me if i'm wrong.
Answer:
F= 134.92 N
Explanation:
Given that
The mass of the moon ,M = 7.4 x 10²² kg
The mass of the man ,m = 79 kg
The radius ,R= 1.7 x 10⁶ m
The force exerted by moon is given as

Now by putting the values in the above equation we get

Therefore the force will be 134.92 N.
F= 134.92 N
Answer:
Pressure = 14.71N/m²
Explanation:
Given the following data;
Force = 375N
Area = 25.5m²
To find the pressure;
Pressure = force/area
Pressure = 375/25.5
Pressure = 14.71N/m²
Therefore, the amount of pressure that is being exerted by blood cells is 14.71 Newton per meter square.