Answer:
how far an object moves in a certain amount of time
Explanation:
The compound that would be most reactive is Ethyne (answer A)
<u><em> explanation</em></u>
- Ethyne is the most unsaturated among the four compounds ( <em> it has a triple bond between the two carbon atoms) .</em>
- The triple bond in ethyne is made up of 1 sigma bond and 2π bond.
- <em>The 2π bond are weaker and can easily break which make Ethyne more reactive than Ethene, methane and Ethane.</em>
Answer:
4.87g
Explanation:
Step 1:
Data obtained from the question. This includes the following:
Mass of solution = 0.35kg
Molality = 0.238 m
Mass of NaCl =..?
Step 2:
Determination of the number of mole of NaCl in the solution.
Molality of a solution is simply defined as the mole of solute per unit kg of the solvent. It is given as:
Molality = mol of solute /mass of solvent (kg)
With the above formula, we calculate the mole of NaCl present in the solution as follow:
Molality = mol of solute /mass of solvent (kg)
0.238 = mol of NaCl /0.35
Cross multiply
mol of NaCl = 0.238 x 0.35
mol of NaCl = 0.0833 mol
Step 3:
Determination of the mass of NaCl in 0.0833 mol of NaCl.
This is illustrated below:
Number of mole NaCl = 0.0833 mol
Molar Mass of NaCl = 23 + 35.5 = 58.5g/mol
Mass of NaCl =..?
Mass = number of mole x molar Mass
Mass of NaCl = 0.0833 x 58.5
Mass of NaCl = 4.87g
Therefore, 4.87g of NaCl is contained in the solution.
This process involves the dilution of the 12 molar HCl. To reduce the concentration, we need to set up an equality so that we know how much of the 12M we need to make the 3.5M.
12 moles HCl 3.5 moles HCl
——————— = ———————
1 Liter of Soln ‘x’ Liters of Soln
Notice that the 12 moles over the 1 liter is equal to 12 molar; in doing this, we’re maintaining the concentration of the initial HCl. By setting it equal to the 3.5 over ‘x’, we’re still maintaining the concentration.
After solving, we find that ‘x’ equals 0.292. This value means that in 0.292 liters of our 12 M HCl solution, there are 3.5 moles of HCl. But, we’re not done yet.
0.292 liters of 12 M HCl can make 1 liter of 3.5 M HCl, but the question asks for 1.5 liters. To get this, multiply 0.292 liters by 1.5, and the new result, 0.4375, represents the amount of 12 M HCl required to prepare a 1500 mL 3.5 M HCl solution.