





Answer:
Explanation:
From the correct question above:
The reaction can be represented as:

From the above reaction; the ICE table can be represented as:

I (mol/L) 0.086 0.28 0 0
C -4x -3x +2x +6x
E 0.086 - 4x 0.28 - 3x +2x +6x
At equilibrium;
The water vapor = 


![\text{equilibrium constant} ({k_c}) = \dfrac{ [N_2]^2 [H_2O]^6 }{ [[NH_3]^4] [O_2]^3 }](https://tex.z-dn.net/?f=%5Ctext%7Bequilibrium%20constant%7D%20%20%28%7Bk_c%7D%29%20%3D%20%20%5Cdfrac%7B%20%5BN_2%5D%5E2%20%5BH_2O%5D%5E6%20%7D%7B%20%5B%5BNH_3%5D%5E4%5D%20%5BO_2%5D%5E3%20%7D)

Replacing the value of x, we have:


Answer:
Consequently, what happens when gas obtained by heating slaked lime and ammonium chloride is passed through copper sulphate solution? The HCl in the gas mixture will form hydrochloric and the H+ will react with some of the NH3(aq), forming NH4^+, and with some of the SO4^2-, forming HSO4^-.
The theoretical yield of NaBr given that 2.36 moles of FeBr₃ reacts is 7.08 moles
<h3>Balanced equation </h3>
2FeBr₃ + 3Na₂S → Fе₂S₃ + 6NaBr
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
<h3>How to determine the theoretical yield of NaBr</h3>
From the balanced equation above,
2 moles FeBr₃ reacted to produce 6 moles of NaBr
Therefore,
2.36 moles FeBr₃ will react to produce = (2.36 × 6) / 2 = 7.08 moles of NaBr
Therefore,
Thus, the theoretical yield of NaBr is 7.08 moles
Learn more about stoichiometry:
brainly.com/question/14735801
#SPJ1
Answer:
Viewing systems from multiple perspectives.
Discovering causes and effects using model tractability.
Improving system understanding through visual analysis.
Explanation:
Got this from google, lol. But, I put three here just in case you could get extra credit for more than two.
Answer:
6.66 mol
Explanation:
(atm x L) ÷ (0.0821 x K)
(0.875 x 250) ÷ (0.0821 x 400)
=6.66108