Answer:
65625/4(x^5)(y²)
Step-by-step explanation:
Using binomial expansion
Formula: (n k) (a^k)(b ^(n-k))
Where (n k) represents n combination of k (nCk)
From the question k = 5 (i.e. 5th term)
n = 7 (power of expression)
a = 5x
b = -y/2
....................
Solving nCk
n = 7
k = 5
nCk = 7C5
= 7!/(5!2!) ------ Expand Expression
=7 * 6 * 5! /(5! * 2*1)
= 7*6/2
= 21 ------
.........................
Solving (a^k) (b^(n-k))
a = 5x
b = -y/2
k = 5
n = 7
Substituting these values in the expression
(5x)^5 * (-y/2)^(7-5)
= (3125x^5) * (-y/2)²
= 3125x^5 * y²/4
= (3125x^5)(y²)/4
------------------------------------
Multiplying the two expression above
21 * (3125x^5)(y²)/4
= 65625/4(x^5)(y²)
Answer:
173.33333333333...
Step-by-step explanation:
4/3=1.3333333...
So 130×1.3333333... is 173.3333333...
Let's say the numbers are "a" and "b"
thus

set the derivative to 0, and check the critical points, there's only one anyway
and do a first-derivative test, to see if it's a maximum
Step-by-step explanation:
1) x+6 =4
x. =4-6
x. =-2
2) x-(-4) =-6
x+ 4. =-6
x. =-6-4
x. =-10
3)2(x-1)=-200
2x-2 =-200
2x. = -200+2
2x. = -198
x. = -198/2
x. = -99
4)2x+(-3) =-23
2x-3. =-23
2x. =-23+3
2x. =-20
x. =-20/2
x. = -10
Answer:
the third one 10 cm, 9cm 9cm