Answer:
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
Explanation:
We recall that Eₙ=
since there was transition from n7 to n=4 we will first calculate the change in the energy i.e ΔE
ΔE=E₄-E₇
ΔE=
ΔE=-9.1760*10^-20 J
Now:
|ΔE|=Energy of photon=h*v=h*c/λ
λ=h*c/|ΔE|
λ=
λ=2.1676*10^-6 m
λ=2167.6*10^-9 m
λ=2167.6 nm
The wavelength of light emitted is 2167.6 nm.
<span>Oxidation or reaction with oxygen is a chemical property</span>
<span>The symbol for hydronium ion concentration is H+. </span><span>There are quite a few
relationships between [H+] and [OH−]
ions. And because there is a large range of number between 10 to 10</span><span>-15</span><span>
M, the pH is used. pH = -log[H+] and pOH = -log[OH−]. In aqueous solutions, </span><span>[H+
][OH- ] = 10-14. From here we can derive the values of each concentration.</span>
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.