Answer: The answer is C
Explanation: Sound waves tend to spread farther the deeper the sound is, and the waves go lower then the second example, deeming it is louder.
The resulting pressure of the gas after decreasing the initial volume from 2 L to 1 L is 3 atm.
<h3>What is
Boyle's Law?</h3>
According to the Boyle's Law at constant temperature, pressure of the gas is inversely proportional to the volume of that gas.
For the given question we use the below equation is:
P₁V₁ = P₂V₂, where
P₁ = initial pressure of gas = 1.5 atm
V₁ = initial volume of gas = 2 L
P₂ = final pressure of gas = ?
V₂ = final volume of gas = 1 L
On putting all these values on the above equation, we get
P₂ = (1.5atm)(2L) / (1L) = 3 atm
Hence required pressure of the gas is 3 atm.
To know more about Boyle's Law, visit the below link:
brainly.com/question/469270
There are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
<h3>HOW TO CALCULATE NUMBER OF MOLES?</h3>
The number of moles of a substance can be calculated by multiplying the molarity by the volume.
No. of moles = Molarity × volume
According to this question, 3L of a KBr solution are contained in a 0.4M.
no. of moles = 3L × 0.4M = 1.2moles
Therefore, there are 1.2 moles of KBr found in 3 Liters of 0.4 M solution.
Learn more about no. of moles at: brainly.com/question/14919968
Base pairs of DNA are A with T, and C with G
here's how to remember:
Apple - Tree
Car - Garage
1. Always give your graph a title in the following form: "The dependence of (your dependent variable) on (your independent variable). <span><span>Let's say that you're doing a graph where you're studying the effect of temperature on the speed of a reaction. In this reaction, you're changing the temperature to known values, so the temperature is your independent variable. Because you don't know the speed of the reaction and speed depends on the temperature, the speed of the reaction is your dependent variable. As a result, the title of your graph will be "The dependence of reaction rate on temperature", or something like that.</span>
</span>2. The x-axis of a graph is always your independent variable and the y-axis is the dependent variable.<span>For the graph described above, temperature would be on the x-axis (the one on the bottom of the graph), and the reaction rate would be on the y-axis (the one on the side of the graph)
</span>3. Always label the x and y axes and give units.<span>Putting numbers on the x and y-axes is something that everybody always remembers to do (after all, how could you graph without showing the numbers?). However, people frequently forget to put a label on the axis that describes what those numbers are, and even more frequently forget to say what those units are. For example, if you're going to do a chart which uses temperature as the independent variable, you should write the word "temperature (degrees Celsius)" on that axis so people know what those numbers stand for. Otherwise, people won't know that you're talking about temperature, and even if they do, they might think you're talking about degrees Fahrenheit.
</span>4. Always make a line graph<span><span>Never, ever make a bar graph when doing science stuff. Bar graphs are good for subjects where you're trying to break down a topic (such as gross national product) into it's parts. When you're doing graphs in science, line graphs are way more handy, because they tell you how one thing changes under the influence of some other variable. </span>
</span><span>5. Never, EVER, connect the dots on your graph!Hey, if you're working with your little sister on one of those placemats at Denny's, you can connect the dots. When you're working in science, you never, ever connect the dots on a graph.Why? When you do an experiment, you always screw something up. Yeah, you. It's probably not a big mistake, and is frequently not something you have a lot of control over. However, when you do an experiment, many little things go wrong, and these little things add up. As a result, experimental data never makes a nice straight line. Instead, it makes a bunch of dots which kind of wiggle around a graph. This is normal, and will not affect your grade unless your teacher is a Nobel prize winner. However, you can't just pretend that your data is perfect, because it's not. Whenever you have the dots moving around a lot, we say that the data is noisy, because the thing you're looking for has a little bit of interference caused by normal experimental error.</span><span>To show that you're a clever young scientist, your best bet is to show that you KNOW your data is sometimes lousy. You do this by making a line (or curve) which seems to follow the data as well as possible, without actually connecting the dots. Doing this shows the trend that the data suggests, without depending too much on the noise. As long as your line (or curve) does a pretty good job of following the data, you should be A-OK.
</span>6. Make sure your data is graphed as large as possible in the space you've been given.<span><span>Let's face it, you don't like looking at little tiny graphs. Your teacher doesn't either. If you make large graphs, you'll find it's easier to see what you're doing, and your teacher will be lots happier.</span>
</span><span>So, those are the steps you need to follow if you're going to make a good graph in your chemistry class. I've included a couple of examples of good and bad graphs below so you know what these things are supposed to look like.</span>