Answer:
f = 9.25 (I think but maybe I read f(4) wrong)
Step-by-step explanation:
so f(4) means x = 4.
The new equation is
f(4) = 2x4 ^2 - 4 + 9
you first do 2x4^2. The minus 4. The add 9.
the answer to that is 4f = 37
Then solve
F = 9.25
Answer:
26 rows
Step-by-step explanation:
this is like a rectangle length×width situation.
seats per row = s
number of rows = r
s × r = 884
s = r + 8
so, we can use e.g. the second equation in the first :
(r + 8) × r = 884
r² + 8r = 884
r² + 8r - 884 = 0
the general solution to such a quadratic equation is
x = (-b ± sqrt(b² - 4ac))/(2a)
in our case
x = r
a = 1
b = 8
c = -884
r = (-8 ± sqrt(8² - 4×1×-884))/(2×1) =
= (-8 ± sqrt(64 + 3536))/2 = (-8 ± sqrt(3600))/2 =
= (-8 ± 60)/2 = -4 ± 30
r1 = -4 + 30 = 26
r2 = -4 - 30 = -34
a negative number did not make any sense for the number of rows, so r = 26 is our answer.
Step-by-step explanation:
(a) If his second pass is the first that he completes, that means he doesn't complete his first pass.
P = P(not first) × P(second)
P = (1 − 0.694) (0.694)
P ≈ 0.212
(b) This time we're looking for the probability that he doesn't complete the first but does complete the second, or completes the first and not the second.
P = P(not first) × P(second) + P(first) × P(not second)
P = (1 − 0.694) (0.694) + (0.694) (1 − 0.694)
P ≈ 0.425
(c) Finally, we want the probability he doesn't complete either pass.
P = P(not first) × P(not second)
P = (1 − 0.694) (1 − 0.694)
P ≈ 0.094
Answer:
0.1
Step-by-step explanation:
73/844=0.08649=0.1(After rounding)