1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nikolay [14]
3 years ago
10

A 4 stroke over-square single cylinder engine with an over square ratio of 1.1,the displacement volume of the engine is 245cc .T

he clearance volume is 27.2cc the bore of this engine is ?
Engineering
1 answer:
julia-pushkina [17]3 years ago
6 0

Answer:

10.007

Explanation:

Assuming we have to find out the compression ratio of the engine

Given information

Cubic capacity of the engine, V = 245 cc

Clearance volume, V_c = 27.2 cc

over square-ratio = 1.1

thus,

D/L = 1.1

where,

D is the bore

L is the stroke

Now,

Volume of the engine V =\frac{\pi}{4} D^2L

plugging values we get

245 = \frac{\pi}{4} D^3/1.1

Solving we get D =7 cm

therefore,  L= 7/1.1 =6.36 cm

Now,

the compression ratio is given as:

r =(V+V_c)/V_c

on substituting the values, we get

r = (245+27.2)/27.2 =10.007

Hence, Compression ratio = 10.007

You might be interested in
Hot carbon dioxide exhaust gas at 1 atm is being cooled by flat plates. The gas at 220 °C flows in parallel over the upper and l
sergeinik [125]

The local convection heat transfer coefficient at 1 m from the leading edge is  0.44 \frac{W}{m^{2} \times K} ,  the average convection heat transfer coefficient over the entire plate is  0.293 \frac{W}{m^{2} \times K}and the total heat flux transfer to the plate is 61.6 KJ.

Explanation:

It is case of heat and mass transfer in which due to temperature difference between gas  and surface. Further temperature  boundary layer will developed on flat plate in longitudinal direction.  

Hot carbon dioxide exhaust gas

physical properties

r= 1.05 \frac{kg}{m^{3}}

c_p = 1.02 \frac{kJ}{Kg \times K}

m= 231 \times 10^{7}  \frac{N \times s }{m^2}

υ = 21.8 \times 10^{6}  \frac{m^2}{s}

k = 32.5 \times 10^{3} \frac{W}{m \times K}

\alpha = 30.1 \times 10^{6} \frac{m^{2}}{s}

Pr = 0.725

Apart from these other data arr given below,

v= 3 \frac{m}{s}  \\ p= 1 atm \\ L_c = 1.5m \\T_g= 220 C \\ T_s = 80 C

To find the local convection heat transfer coefficient at 1 m from the leading edge, we use correlation used for laminar flow over flat plate,

Nu = \frac{ h \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

where h= Average heat transfer coefficient

           L= Length of a plate

           k= Thermal Conductivity of carbon dioxide

           Re = Reynold's Number

           Pr  = Prandtle Number

(a) Convection heat transfer coefficient at 1 m from the leading edge

    is referred as local convection heat transfer coefficient.

   

   To find convection heat transfer coefficient at 1 m from leading edge,

  Nu = \frac{ h_local \times L }{k}  = 0.332 \times (Re^{\frac{1}{2} }) \times (Pr^{\frac{1}{3} })

  Here, first we have to find Re and Pr,

   Re = \frac{r \times v \times L}{m}

   Re = \frac{1.0594 \times 3 \times 1}{231 \times 10^{7}}

   Re = 20.63 \times  10^{-10}

   Pr number is take from physical property data and Pr is 0.725.

   Putting value of Re and Pr in main equation,

   we get

   Nu = \frac{ h_local \times 1 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   = 32.5 \times 10^{3} \times  0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    h_local   =  0.44 \frac{W}{m^{2} \times K}

(b)  To find average convection heat transfer coefficient,

      it can be find out as case (a), only difference is that instead of L=1 m,        L=1.5 m would come,  

   Therefore,

    Nu = \frac{ h \times 1.5 }{32.5 \times 10^{3}}  = 0.332 \times ( (20.63 \times 10^{-10})^{\frac{1}{2} }) \times (0.725^{\frac{1}{3} })

    Finally,

      h  = \frac{0.44}{1.5}

      h  = 0.293 \frac{W}{m^{2} \times K}

(C) Total heat flux transfer to the plate is found out by,

     Q = h \times (T_g - T_s)

     Q = 0.293 \times (220-80) \\ Q= 0.293 \times 140  \\ Q= 61.6 KJ

     

     

   

   

     

   

     

   

   

 

   

   

   

   

8 0
3 years ago
A sewage lagoon that has a surface area of 10 ha and a depth of 1 m is receiving 8,640 m^3 /d of sewage containing 100 mg/L of b
Marysya12 [62]

Answer: Coefficient= 0.35 per day

Explanation:

To find the bio degradation reaction rate coefficient, we have

k= \frac{(Cin)(Qin)-(Cout)(Qout)}{(Clagoon)V}

Here, the C lagoon= 20 mg/L

Q in= Q out= 8640 m³/d

C in= 100 mg/L

C out= 20 mg/L

V= 10 ha* 1* 10

V= 10⁵ m³

So, k= \frac{8640*100-8640*20}{20*10^5}

k= 0.35 per day

6 0
3 years ago
A construction crew lifts approximately 400 lb. of material several times during a day from a flatbed truck to a 25 ft. rooftop.
Irina18 [472]

Answer:

2ib

Explanation:

if you divide 10 divided by 2 it gives you 5 and then subtract it by 2.2 = 2.8

there goes your answer.

5 0
2 years ago
Bending is defined as? A. the application of a load tending to distort a member in one direction. B. the application of opposing
amm1812
Hi how are you today
4 0
3 years ago
The _______ is a function that describes how the pinna, ear canal, head, and torso change the intensity of sounds with different
scoundrel [369]

Answer:

B: Directional Transfer Function

Explanation:

The function that describes how the pinna, ear canal, head, and torso change the intensity of sounds with different frequencies that arrive at each ear from different locations in space is called Directional Transfer Function.

8 0
2 years ago
Other questions:
  • Consider a single crystal of some hypothetical metal that has the BCC crystal structure and is oriented such that a tensile stre
    10·1 answer
  • Time complexity of merge sort
    15·1 answer
  • There are 30 students in a class. Choose the statement that best explains why at least two students have last names that begin w
    12·1 answer
  • What is the theoretical density in g/cm3 for Lead [Pb]?
    13·1 answer
  • Realize the function f(a, b, c, d, e) = Σ m(6, 7, 9, 11, 12, 13, 16, 17, 18, 20, 21, 23, 25, 28)using a 16-to-1 MUX with control
    13·1 answer
  • Both equilibrium equations and constitutive models are needed to solve statically indeterminate problems. a)- True b)-False
    13·1 answer
  • A cartridge electrical heater is shaped as a cylinder of length L=200mm and outer diameter D=20 mm. Under normal operating condi
    5·1 answer
  • A front wheel drive vehicle with four wheel disc brakes is pulling to the left. Tech A says an external kink or internal restric
    13·1 answer
  • What type of plans have to do with earth, soil, excavation, and location<br> of a house on a lot?
    12·1 answer
  • The current flowing into the collector lead of a certain bipolar junction transistor (BJT) is measured to be 1 nA. If no charge
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!