1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wariber [46]
3 years ago
9

Which statement about tensile stress is true? A. Forces that act perpendicular to the surface and pull an object apart exert a t

ensile stress on the object. B. Forces that act perpendicular to the surface and squeeze an object exert a tensile stress on the object. C. Forces that act parallel to the surface exert a tensile stress on the object. D. Forces that decrease the length of the material exert a tensile stress on the object.
Engineering
1 answer:
svp [43]3 years ago
3 0

Answer:

A. Forces that act perpendicular to the surface and pull an object apart exert a tensile stress on the object.

Explanation:

Tensile stress is referred as a deforming force, in which force acts perpendicular to the surface and pull an object apart, attempting to elongate it.

The tensile stress is a type of normal stress, in which a perpendicular force creates the stress to an object’s surface.

Hence, the correct option is "A."

You might be interested in
Explain the prosses of welding
klio [65]

Answer:

Welding is a fabrication process whereby two or more parts are fused together by means of heat, pressure or both forming a join as the parts cool. Welding is usually used on metals and thermoplastics but can also be used on wood.

Explanation:

7 0
3 years ago
Read 2 more answers
True or false. Part of the mission of the NTSB is to determine the probable cause of an accident
eimsori [14]

uniform

welcome 2 Ghana African state western region

6 0
3 years ago
A sign erected on uneven ground is guyed by cables EF and EG. If the force exerted by cable EF at E is 46 lb, determine the mome
Vikki [24]

Answer:

M_AD = 1359.17 lb-in

Explanation:

Given:

- T_ef = 46 lb

Find:

- Moment of that force T_ef about the line joining points A and D.

Solution:

- Find the position of point E:

                           mag(BC) = sqrt ( 48^2 + 36^2) = 60 in

                           BE / BC = 45 / 60 = 0.75

Hence,                E = < 0.75*48 , 96 , 36*0.75> = < 36 , 96 , 27 > in

- Find unit vector EF:

                           mag(EF) = sqrt ( (21-36)^2 + (96+14)^2 + (57-27)^2 ) = 115 in

                           vec(EF) = < -15 , -110 , 30 >

                           unit(EF) = (1/115) * < -15 , -110 , 30 >

- Tension            T_EF = (46/115) * < -15 , -110 , 30 > = < -6 , -44 , 12 > lb

- Find unit vector AD:

                           mag(AD) = sqrt ( (48)^2 + (-12)^2 + (36)^2 ) = 12*sqrt(26) in

                           vec(AD) = < 48 , -12 , 36 >

                           unit(AD) = (1/12*sqrt(26)) * < 48 , -12 , 36 >

                           unit (AD) = <0.7845 , -0.19612 , 0.58835 >

Next:

                           M_AD = unit(AD) . ( E x T_EF)

                           M_d = \left[\begin{array}{ccc}0.7845&-0.19612&0.58835\\36&96&27\\-6&-44&12\end{array}\right]

                            M_AD = 1835.73 + 116.49528 - 593.0568

                            M_AD = 1359.17 lb-in

3 0
3 years ago
The fracture toughness of a stainless steel is 137 MPa*m12. What is the tensile impact load sustainable before fracture that a r
Charra [1.4K]

Answer:

7.7 kN

Explanation:

The capacity of a material having a crack to withstand fracture is referred to as fracture toughness.

It can be expressed by using the formula:

K = \sigma Y \sqrt{\pi a}

where;

fracture toughness K = 137 MPam^{1/2}

geometry factor Y = 1

applied stress \sigma = ???

crack length a = 2mm = 0.002

∴

137 =\sigma \times 1  \sqrt{ \pi \times 0.002 }

137 =\sigma \times 0.07926

\dfrac{137}{0.07926} =\sigma

\sigma = 1728.489 MPa

Now, the tensile impact obtained is:

\sigma = \dfrac{P}{A}

P = A × σ

P = 1728.289 × 4.5

P = 7777.30 N

P = 7.7 kN

7 0
3 years ago
For a column that is pinned at both ends, the critical buckling load can be calculated as, Pcr = π2 E I /L^2 where E is Young's
gulaghasi [49]

When a slender member is subjected to an axial compressive load, it may fail by a ... Consider a column of length, L, cross-sectional Moment of Inertia, I, having Young's Modulus, E. Both ends are pinned, meaning they can freely rotate ... p2EI L2 ... scr, is the Euler Buckling Load divided by the columns cross-sectional area

6 0
4 years ago
Other questions:
  • Show that the solution of thin airfoil theory of a symmetric airfoil given below satisfies the Kutta condition. What angle of at
    11·1 answer
  • What is the one change that golden expects to see in public transportation?
    12·1 answer
  • Write a program that prompts for a line of text and then transforms the text based on chosen actions. Actions include reversing
    7·1 answer
  • 3–102 One of the common procedures in fitness programs is to determine the fat-to-muscle ratio of the body. This is based on the
    5·1 answer
  • thermodynamics A nuclear power plant based on the Rankine cycle operates with a boiling-water reactor to develop net cycle power
    9·1 answer
  • (2 points) A perfectly mixed aeration pond with no recycle serves as the biological reactor for a small community. The pond rece
    15·1 answer
  • "It is better to be a human being dissatisfied than a pig satisfied; better to be Socrates dissatisfied than a fool satisfied. A
    7·1 answer
  • Chandler is working on a school editing project. Because he copied 10 GB of raw footage to his computer, its memory is running l
    11·1 answer
  • Describe two characteristics that bridges and skyscrapers have in common.
    10·1 answer
  • What is the density of the mass of 24.0g and a volume of 6 ml?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!