Answer:
Both come from the sun
Both are reusable sources
and both don't cause pollution
Explanation:
Answer:
A. Yes
B. Yes
Explanation:
We want to evaluate the validity of the given assertions.
1. The first statement is true
The sine rule stipulates that the ratio of a side and the sine of the angle facing the side is a constant for all sides of the triangle.
Hence, to use it, it’s either we have two sides and an angle and we are tasked with calculating the value of the non given side
Or
We have two angles and a side and we want to calculate the value of the side provided we have the angle facing this side in question.
For notation purposes;
We can express the it for a triangle having three sides a, b, c and angles A,B, C with each lower case letter being the side that faces its corresponding big letter angles
a/Sin A = b/Sin B = c/Sin C
2. The cosine rule looks like the Pythagoras’s theorem in notation but has a subtraction extension that multiplies two times the product of the other two sides and the cosine of the angle facing the side we want to calculate
So let’s say we want to calculate the side a in a triangle of sides a, b , c and we have the angle facing the side A
That would be;
a^2 = b^2 + c^2 -2bcCosA
So yes, the cosine rule can be used for the scenario above
Diode logic gates are not suitable for cascading operation because the pull-down or pull-up resistance within makes them a high output resistance device.
<h3>What is a
cascading operation?</h3>
A cascading operation can be defined as a process which involves the use of a circuit breaker's current-limiting capacity in order to enable an installation of lower-rated and lower-cost circuit breakers.
According to the National Electrical Code (NEC), diode logic gates are not suitable for cascading operation because the pull-down or pull-up resistance within makes them a high output resistance device.
Read more on National Electrical Code here: brainly.com/question/10619436
#SPJ1
Answer:
When water is surrounding T_s = 34.17 degree C
When air surrounding T_S = 1434.7 degree C
from above calculation we can conclude that air is less effective than water as heat transfer agent
Explanation:
Given data:
length = 300 mm
Outer diameter = 30 mm
Dissipated energy = 2 kw = 2000 w
Heat transfer coefficient IN WATER = 5000 W/m^2 K
Heat transfer coefficient in air = 50 W/m^2 K
we know that 
From newton law of coding we have

is surface temp.
T - temperature at surrounding
![P = hA(T_s - T_{\infity})[tex]\frac{P}{\pi hDL} = (T_s - T_{\infity})](https://tex.z-dn.net/?f=P%20%3D%20hA%28T_s%20-%20%20T_%7B%5Cinfity%7D%29%3C%2Fp%3E%3Cp%3E%5Btex%5D%5Cfrac%7BP%7D%7B%5Cpi%20hDL%7D%20%3D%20%20%28T_s%20-%20%20T_%7B%5Cinfity%7D%29)
solving for[/tex] T_s [/tex] w have



When air is surrounding we have



from above calculation we can conclude that air is less effective than water as heat transfer agent
Answer:
Hans Christian Ørsted
One of the most important discoveries relating to current was made accidentally by Hans Christian Ørsted in 1820, when, while preparing a lecture, he witnessed the current in a wire disturbing the needle of a magnetic compass.
Explanation:
is that what you were looking for