Answer:
30 hours
Explanation:
Average speed = distance/time
Let the time taken for each plane to pass each other be t
Average speed of plane that left from New York = 650 mph
Distance covered = 650t miles
Average speed of plane that left from Mexico = 550 mph
Distance covered = 550t miles
Distance apart = 3000 miles
650t - 550t = 3000
100t = 3000
t = 3000/100 = 30 hours
Answer:
I can't understand your question sorry
Answer:
Corect answer is D
Explanation:
Assuming that the C
O
2 gas is behaving ideally, therefore, we can use the ideal gas law to find the pressure increase in the container by:
P
V=nRT ⇒ P=n
R
T
/V
n=no of moles of the gas = mass/molar mass
Molar mass o f C
O
2=44g/mol, mass = 44g
mole n = 1mole
T=20C=293K
R=0.0821L.atm/mol.K
P=nRT/V
P = 1 x 0.0821 x 293/2
P = 12atm
Answer:
Explanation:
Orbital velocity is the speed that a body that orbits around another body must have, for its orbit to be stable. For orbits with small eccentricity and when one of the masses is almost negligible compared to the other mass, like in this case, the orbital speed is given by:
Where M is the greater mass around which this negligible body is orbiting, r is the radius of the greater mass and G is the universal gravitational constant. So:
Answer:
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2
Explanation:
Acceleration is the change in velocity per unit time
a = ∆v/t
Given;
∆v = 50.0miles/hour - 0
∆v = 50.0miles/hours × 1609.344 metres/mile × 1/3600 seconds/hour
∆v = 22.352m/s
t = 2.22 s
So,
Acceleration a = ∆v/t = 22.352m/s ÷ 2.22s
a = 10.07m/s^2
Their acceleration in meters per second squared is 10.07m/s^2