0A: accelerating
AB: constant
BC: decelerating
CD:at rest
DE:accelerating
EF: constant
hope this helps
Tides are the rise and fall of sea levels caused by the combined effects of the gravitational forces exerted by the Moon and the Sun, and the rotation of the Earth. Tide tables can be used to find the predicted times and amplitude (or "tidal range") of tides at any given locale.
For further expiation please contact me at 678-987-2411. Disclaimer(This is not a real number)
25 km/hr I hope this helps;)
Answer:
The angular speed of the new system is
.
Explanation:
Due to the absence of external forces between both disks, the Principle of Angular Momentum Conservation is observed. Since axes of rotation of each disk coincide with each other, the principle can be simplified into its scalar form. The magnitude of the Angular Momentum is equal to the product of the moment of inertial and angular speed. When both disks begin to rotate, moment of inertia is doubled and angular speed halved. That is:
![I\cdot \omega_{o} = 2\cdot I \cdot \omega_{f}](https://tex.z-dn.net/?f=I%5Ccdot%20%5Comega_%7Bo%7D%20%3D%202%5Ccdot%20I%20%5Ccdot%20%5Comega_%7Bf%7D)
Where:
- Moment of inertia of a disk, measured in kilogram-square meter.
- Initial angular speed, measured in radians per second.
- Final angular speed, measured in radians per second.
This relationship is simplified and final angular speed can be determined in terms of initial angular speed:
![\omega_{f} = \frac{1}{2}\cdot \omega_{o}](https://tex.z-dn.net/?f=%5Comega_%7Bf%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Comega_%7Bo%7D)
Given that
, the angular speed of the new system is:
![\omega_{f} = \frac{1}{2}\cdot \left(6\,\frac{rad}{s} \right)](https://tex.z-dn.net/?f=%5Comega_%7Bf%7D%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%5Cleft%286%5C%2C%5Cfrac%7Brad%7D%7Bs%7D%20%5Cright%29)
![\omega_{f} = 3\,\frac{rad}{s}](https://tex.z-dn.net/?f=%5Comega_%7Bf%7D%20%3D%203%5C%2C%5Cfrac%7Brad%7D%7Bs%7D)
The angular speed of the new system is
.
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as
![\omega_f = \omega_0 + \alpha t](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%5Comega_0%20%2B%20%5Calpha%20t)
Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,
![a = \alpha r](https://tex.z-dn.net/?f=a%20%3D%20%5Calpha%20r)
where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that
![\omega_f = (94rpm)(\frac{2\pi rad}{60s})= 9.8436rad/s](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%2894rpm%29%28%5Cfrac%7B2%5Cpi%20rad%7D%7B60s%7D%29%3D%209.8436rad%2Fs)
![\omega_0 = 63rpm(\frac{2\pi rad}{60s})= 6.5973rad/s](https://tex.z-dn.net/?f=%5Comega_0%20%3D%2063rpm%28%5Cfrac%7B2%5Cpi%20rad%7D%7B60s%7D%29%3D%206.5973rad%2Fs)
![t = 11s](https://tex.z-dn.net/?f=t%20%3D%2011s)
Replacing the previous equation with our values we have,
![\omega_f = \omega_0 + \alpha t](https://tex.z-dn.net/?f=%5Comega_f%20%3D%20%5Comega_0%20%2B%20%5Calpha%20t)
![9.8436 = 6.5973 + \alpha (11)](https://tex.z-dn.net/?f=9.8436%20%3D%206.5973%20%2B%20%5Calpha%20%2811%29)
![\alpha = \frac{9.8436- 6.5973}{11}](https://tex.z-dn.net/?f=%5Calpha%20%3D%20%5Cfrac%7B9.8436-%206.5973%7D%7B11%7D)
![\alpha = 0.295rad/s^2](https://tex.z-dn.net/?f=%5Calpha%20%3D%200.295rad%2Fs%5E2)
The tangential velocity then would be,
![a = \alpha r](https://tex.z-dn.net/?f=a%20%3D%20%5Calpha%20r)
![a = (0.295)(0.2)](https://tex.z-dn.net/?f=a%20%3D%20%280.295%29%280.2%29)
![a = 0.059m/s^2](https://tex.z-dn.net/?f=a%20%3D%200.059m%2Fs%5E2)
Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation
![\omega_f^2=\omega_0^2+2\alpha\theta](https://tex.z-dn.net/?f=%5Comega_f%5E2%3D%5Comega_0%5E2%2B2%5Calpha%5Ctheta)
Replacing with our values and re-arrange to find ![\theta,](https://tex.z-dn.net/?f=%5Ctheta%2C)
![\theta = \frac{\omega_f^2-\omega_0^2}{2\alpha}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Cfrac%7B%5Comega_f%5E2-%5Comega_0%5E2%7D%7B2%5Calpha%7D)
![\theta = \frac{9.8436^2-6.5973^2}{2*0.295}](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%5Cfrac%7B9.8436%5E2-6.5973%5E2%7D%7B2%2A0.295%7D)
![\theta = 90.461rad](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2090.461rad)
That is equal in revolution to
![\theta = 90.461rad(\frac{1rev}{2\pi rad}) = 14.397rev](https://tex.z-dn.net/?f=%5Ctheta%20%3D%2090.461rad%28%5Cfrac%7B1rev%7D%7B2%5Cpi%20rad%7D%29%20%3D%2014.397rev)
The linear displacement of the system is,
![x = \theta*(2\pi*r)](https://tex.z-dn.net/?f=x%20%3D%20%5Ctheta%2A%282%5Cpi%2Ar%29)
![x = 14.397*(2\pi*\frac{0.25}{2})](https://tex.z-dn.net/?f=x%20%3D%2014.397%2A%282%5Cpi%2A%5Cfrac%7B0.25%7D%7B2%7D%29)
![x = 11.3m](https://tex.z-dn.net/?f=x%20%3D%2011.3m)