Answer:
11.3 m/s
Explanation:
KE₁ = KE₂
½m₁v₁² = ½m₂v₂²
½ (2 kg) v² = ½ (4 kg) (8 m/s)²
v ≈ 11.3 m/s
Answer:
μsmín = 0.1
Explanation:
- There are three external forces acting on the riders, two in the vertical direction that oppose each other, the force due to gravity (which we call weight) and the friction force.
- This friction force has a maximum value, that can be written as follows:

where μs is the coefficient of static friction, and Fn is the normal force,
perpendicular to the wall and aiming to the center of rotation.
- This force is the only force acting in the horizontal direction, but, at the same time, is the force that keeps the riders rotating, which is the centripetal force.
- This force has the following general expression:

where ω is the angular velocity of the riders, and r the distance to the
center of rotation (the radius of the circle), and m the mass of the
riders.
Since Fc is actually Fn, we can replace the right side of (2) in (1), as
follows:

- When the riders are on the verge of sliding down, this force must be equal to the weight Fg, so we can write the following equation:

- (The coefficient of static friction is the minimum possible, due to any value less than it would cause the riders to slide down)
- Cancelling the masses on both sides of (4), we get:

- Prior to solve (5) we need to convert ω from rev/min to rad/sec, as follows:

- Replacing by the givens in (5), we can solve for μsmín, as follows:

I feel like the answer would be B. The chair pushes down on the floor becuase the question says when you sit in a chair, your body exerts a downward force on the chair so it would be pushing downward meaning that the chair would also go down making it push onto the floor.
The main cause of this is Friction. The more oil that is laid down, the less friction there is between the ball and the lane surface. The less friction, the harder it is for the bowler to send the ball in a curved path imparted by the spin that the bowler puts on the ball at the instant of release.
Do you mean in general or in a piece of paper?