Complete Question
The spaceship Intergalactica lands on the surface of the uninhabited Pink Planet, which orbits a rather average star in the distant Garbanzo Galaxy. A scouting party sets out to explore. The party's leader–a physicist, naturally–immediately makes a determination of the acceleration due to gravity on the Pink Planet's surface by means of a simple pendulum of length 1.08m. She sets the pendulum swinging, and her collaborators carefully count 101 complete cycles of oscillation during 2.00×102 s. What is the result? acceleration due to gravity:acceleration due to gravity: m/s2
Answer:
The acceleration due to gravity is
Explanation:
From the question we are told that
The length of the simple pendulum is 
The number of cycles is 
The time take is
Generally the period of this oscillation is mathematically evaluated as

substituting values


The period of this oscillation is mathematically represented as

making g the subject of the formula we have
![g = \frac{L}{[\frac{T}{2 \pi } ]^2 }](https://tex.z-dn.net/?f=g%20%3D%20%5Cfrac%7BL%7D%7B%5B%5Cfrac%7BT%7D%7B2%20%5Cpi%20%7D%20%5D%5E2%20%7D)

Substituting values

They all compact like are close together
Answer:
Force plane exert on pilot = 4270 N
Explanation:
first convert radius and speed to ms
using formula from force we know that
mass = weight/ gravity = 700 N/ 9.8N/kg= 71.4 kg
Fc= N-mg
N= Fc+ mg As Fc = mv²/R
N= mv²/R + mg
taking m common
N= m( v²/R +g)
= 71.4( (200)²/ 800 + 9.8 )
Force = 4270 N
Answer:
To increase kinetic friction, the amount of fine water droplets sprayed before the game is limited.
To reduce kinetic friction. increase the amount of fine water droplets during pregame preparation and sweeping in front of the curling stones.
Explanation:
In curling sports, since the ice sheets are flat, the friction on the stone would be too high and the large smooth stone would not travel half as far. Thus controlling the amount of fine water droplets sprayed before the game is limited pregame is necessary to increase friction.
On the other hand, reducing ice kinetic friction involves two ways. The first way is adding bumps to the ice which is known as pebbling. Fine water droplets are sprayed onto the flat ice surface. These droplets freeze into small "pebbles", which the curling stones "ride" on as they slide down the ice. This increases contact pressure which lowers the friction of the stone with the ice. As a result, the stones travel farther, and curl less.
The second way to reduce the kinetic friction is sweeping in front of the large smooth stone. The sweeping action quickly heats and melts the pebbles on the ice leaving a film of water. This film reduces the friction between the stone and ice.