Answer:
v = 384km/min
Explanation:
In order to calculate the speed of the Hubble space telescope, you first calculate the distance that Hubble travels for one orbit.
You know that 37000 times the orbit of Hubble are 1,280,000,000 km. Then, for one orbit you have:

You know that one orbit is completed by Hubble on 90 min. You use the following formula to calculate the speed:

hence, the speed of the Hubble is approximately 384km/min
a) 2.75 s
The vertical position of the ball at time t is given by the equation

where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:

This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:

where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:

And the negative sign means the direction is downward.
As we know by the first law of thermodynamics

here we know that
Q = heat given to the system

W = work done by the system
now here we can say


now we can say that heat will be given as

now here we can say that Jin does the error in his first step while calculation of change in internal energy as he had to subtract it while he added the two energy
So best describe Jin's Error is
<em>B )For step 1, he should have subtracted 78 J from 180 J to find the change in internal energy. </em>
A) reactants interact to form products with different chemical and physical properties