The volume of the cone is 3.14 x 14 x 14
Answer:
1 roll of ribbon, 1 package of buttons, and 3 packages of beads
Step-by-step explanation:
Use the information you found about how much each makes to answer the question.
Lynette will make 6 decorations.
Since 1 roll makes 6, she needs 1 roll.
Since 1 package of buttons makes 6, she needs 1 package.
Since 1 package of beads makes 2, she needs 3 packages.
(9/18)(9/18) = 81/324. The probability that Amy takes out pink chips in both draws is 81/324.
In this example we will use the probability property P(A∩B), which means given two independent events A and B, their joint probability P(A∩B) can be expressed as the product of the individual probabilities P(A∩B) = P(A)P(B).
The total number of chips of different colors in Amy's bag is:
8 blue chips + 9 pink chips + 1 white chip = 18 color chips
Amy takes out a chip from the bag randomly without looking, she replaces the chip and then takes out another chip from the bag.
So, the probability that Amy takes out a pink chip in the first draw is:
P(A) = 9/18 The probability of takes out a pink chip is 9/18 because there are 9 pink chips in the total of 18 color chips.
Then, Amy replaces the chip an takes out another which means there are again 18 color chips divide into 8 blue chips, 9 pink chips, and 1 white chip. So, the probability of takes out a pink chip in the second draw is:
P(B) = 9/18 The probability of takes out a pink chip is 9/18 because there are 9 pink chips in the total of 18 color chips.
What is the probability that Amy takes out a pink chip in both draws?
P(A∩B) = P(A)P(B)
P(A∩B) = (9/18)(9/18) = 81/324
The solution to given system of equations are (x, y) = (4, 2)
<em><u>Solution:</u></em>
<em><u>Given system of equations are:</u></em>
2x + 3y = 14 ---------- eqn 1
3x - 4y = 4 --------- eqn 2
We have to solve the given system of equations
We can solve the above system of equations by elimination method
<em><u>Multiply eqn 1 by 3</u></em>
3(2x + 3y = 14)
6x + 9y = 42 --------- eqn 3
<em><u>Multiply eqn 2 by 2</u></em>
2(3x - 4y = 4)
6x - 8y = 8 ----------- eqn 4
<em><u>Subtract eqn 4 from eqn 3</u></em>
6x + 9y = 42
6x - 8y = 8
( - ) --------------
9y + 8y = 42 - 8
17y = 34
<h3>y = 2</h3>
<em><u>Substitute y = 2 in eqn 1</u></em>
2x + 3(2) = 14
2x + 6 = 14
2x = 14 - 6
2x = 8
<h3>x = 4</h3>
Thus the solution to given system of equations are (x, y) = (4, 2)