L

mol/dm³ is measure for molarity
Mass = molarity x molar mass( NaNO₃) x volume
mass = 1.50 x 85.00 x 4.50
mass = 573.75 g of NaNO₃
hope this helps!
Answer:
2) 0.4 mol
Explanation:
Step 1: Given data
- Volume of the solution (V): 500 mL
- Molar concentration of the solution (M): 0.8 M = 0.8 mol/L
Step 2: Convert "V" to L
We will use the conversion factor 1 L = 1000 mL.
500 mL × 1 L/1000 mL = 0.500 L
Step 3: Calculate the moles of KBr (solute)
The molarity is the quotient between the moles of solute (n) and the liters of solution.
M = n/V
n = M × V
n = 0.8 mol/L × 0.500 L = 0.4 mol
<h3>
Answer:</h3>
Lead-205 (Pb-205)
<h3>
Explanation:</h3>
<u>We are given;</u>
We are supposed to identify its product after an alpha decay;
- Polonium-209 has a mass number of 209 and an atomic number of 84.
- When an element undergoes an alpha decay, the mass number decreases by 4 while the atomic number decreases by 2.
- Therefore, when Po-209 undergoes alpha decay it results to the formation of a product with a mass number of 205 and atomic number of 82.
- The product from this decay is Pb-205, because Pb-205 has a mass number of 205 and atomic number 82.
- The equation for the decay is;
²⁰⁹₈₄Po → ²⁰⁵₈₂Pb + ⁴₂He
- Note; An alpha particle is represented by a helium nucleus, ⁴₂He.
Answer:
Explanation:
conjugate acid, based on Brønsted–Lowry acid–base theory, is a chemical compound that is formed by the reception of a proton by a base
a. CH₃COOH + H₂O ⇌ H₃0⁺ + CH₃C00-
Acid <> CH₃COOH
Base <> H₂O
Conjugate acid <> H₃0 +
Conjugate base <>CH₃C00-
b. HCO₃ + H₂O ⇌ H₂CO₃⁻ + OH⁻
Acid <> H₂O
Base <> HCO₃
Conjugate acid <> H₂CO₃⁻
Conjugate base <>OH⁻
C. HNO₃ + SO₄²⁻ ⇌ HSO₄⁻ + NO₃⁻
Acid <>HNO₃
Base <>SO₄²⁻
Conjugate acid <>HSO₄⁻
Conjugate base <>NO₃⁻
A Bronsted acid is reffered to as a proton donor while a Bronsted base is a proton acceptor