SrSo4 = Sr(2+) + SO4(2-)
Let’s say that the initial concentration of SrSo4 was 1. ( or we have 1 mole of this reagent).
When The reaction occurs part of SrSo4is dissociated. And we get X mole Sr(2+) and So4(2-).
Ksp=[Sr(2+)]*[SO4(2-)]
X^2=3.2*10^-7
X=5.6*10^-4
<u>Answer:</u> The temperature of the system is 273 K
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of carbon dioxide = 1 lb = 453.6 g (Conversion factor: 1 lb = 453.6 g)
Molar mass of carbon dioxide = 44 g/mol
Putting values in above equation, we get:

To calculate the temperature of gas, we use the equation given by ideal gas equation:
PV = nRT
where,
P = Pressure of carbon dioxide = 200 psia = 13.6 atm (Conversion factor: 1 psia = 0.068 atm)
V = Volume of carbon dioxide =
(Conversion factor:
)
n = number of moles of carbon dioxide = 10.31 mol
R = Gas constant = 
T = temperature of the system = ?
Putting values in above equation, we get:

Hence, the temperature of the system is 273 K
Answer:

Explanation:
Scientific notation is the way of writing numbers which are either large or small. The number is written in the scientific notation when the number is between 1 and 10 and then multiplied by the power of 10. Engineering notation is the same version of the scientific notation but the number can be between 1 and 1000 and in this exponent of the ten is divisible by three.
For example,
is to be written as
in engineering notation.
The given number:
0.00000009345 can be written as 
Answer upto 4 significant digits = 
Two German chemists, Justus von Liebig (1803–1873) and Friedrich Wöhler (1800–1882), were responsible for the emergence of organic chemistry in the early nineteenth century. Their quantitative analytical methods helped establish the constitution of newly isolated and synthesized carbon compounds.