Given what we know, we can confirm that hair gel is considered a noncrystalline solid due to Atoms in the hair gel having no particular order or pattern.
<h3>What is a noncrystalline solid?</h3>
- This is a solid whose atoms are amorphous.
- What this means is that the atoms lack a specific order like most solids.
- The most common example of this is glass.
Therefore, given the definition of a noncrystalline solid as a solid whose atoms lack a specified order, we can confirm that the second option which states that "Atoms in the hair gel having no particular order or pattern" is correct.
To learn more about Atoms visit:
brainly.com/question/13981855?referrer=searchResults
Answer:
Explanation:
Given parameters;
pH = 8.74
pH = 11.38
pH = 2.81
Unknown:
concentration of hydrogen ion and hydroxyl ion for each solution = ?
Solution
The pH of any solution is a convenient scale for measuring the hydrogen ion concentration of any solution.
It is graduated from 1 to 14
pH = -log[H₃O⁺]
pOH = -log[OH⁻]
pH + pOH = 14
Now let us solve;
pH = 8.74
since pH = -log[H₃O⁺]
8.74 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 1.82 x 10⁻⁹mol dm³
pH + pOH = 14
pOH = 14 - 8.74
pOH = 5.26
pOH = -log[OH⁻]
5.26 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] = 5.5 x 10⁻⁶mol dm³
2. pH = 11.38
since pH = -log[H₃O⁺]
11.38 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 4.17 x 10⁻¹² mol dm³
pH + pOH = 14
pOH = 14 - 11.38
pOH = 2.62
pOH = -log[OH⁻]
2.62 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] =2.4 x 10⁻³mol dm³
3. pH = 2.81
since pH = -log[H₃O⁺]
2.81 = -log[H₃O⁺]
[H₃O⁺] = 10⁻
[H₃O⁺] = 1.55 x 10⁻³ mol dm³
pH + pOH = 14
pOH = 14 - 2.81
pOH = 11.19
pOH = -log[OH⁻]
11.19 = -log[OH⁻]
[OH⁻] = 10
[OH⁻] =6.46 x 10⁻¹²mol dm³
3I₂ + 2Al → 2AlI₃
m(I₂)=3M(I₂)m(Al)/{2M(Al)}
m(I₂)=3*253.8*20.4/{2*27.0}=287.64 g
The answer is B. two chlorine atoms.
The chemical formula of the compound is BaCl2~
Reaction: 2K₍s₎ + 2H₂O₍l₎ → 2KOH₍aq₎ + H₂₍g₎.
K - potassium.
H₂O - water.
KOH - potassium-hydroxide.
H₂ - hydrogen.
s - solid phase.
l - liquid.
aq - disolves in water.
g - gas.
Reaction is exothermal (release of energy) and potassium burns a purple flame. H<span>ydrogen released during the reaction reacts with </span>oxygen<span> and ignites.</span><span>
</span>