B, sharing electrons is a characteristic of covenant bonds.
No because the deviation from the theoretical value is quite high and the temperature range of your sample is too wide.
Answer: .45 moles of CO2, H20,and NaCl
Explanation:
Answer:

Explanation:
Let's firstly identify the atomic number (the number of protons) of Pu. This is done by referring to the periodic table and finding Pu. The atomic number of Pu is:

In order to identify the type of a nuclear decay, we need to find the N/Z ratio. This is the ratio between the number of neutrons and the atomic number of an isotope. The number of neutrons is found by subtracting the number of protons from the mass number:

That said, the N/Z ratio equation becomes:

This is a relatively high number thinking about the belt of stability of isotopes. Ideally, stable isotopes with a low Z value have an N/Z ratio of 1. Heavier isotopes with Z > 50 would have a slightly higher N/Z ratio and would be stable around N/Z = 1.25. This means we wish to decrease the N/Z ratio as much as possible.
Among all the decays, alpha-decay is preferred to decrease the N/Z ratio significantly (1.45 is much higher than 1.25). That said, we'll release an alpha particle with some nucleotide X of mass M and atomic number Z:

According to the mass and charge conservation law:


Identify an element with Z = 92 in the periodic table. This is uranium, U:

Answer:
A. The amount of energy needed to remove 1 mole of electrons from 1 mole of ground-state atoms or ions in the gas phase.
Explanation:
Ionization energy is the quantity of energy required to remove an electron in ground electronic state from an isolated gaseous atom or ion, resulting in a cation. kJ/mol is the expresion we use for this energy, it refers to the amount of energy it takes for all the atoms in a mole to lose one electron each.
Ionization energy can be used as an indicator of reactivity and can be used to help predict the strength of chemical bonds because the more electrons are lost, the more positive the ion will be and the harder it will be to separate the electrons from the atom.
I hope you find this information useful and interesting! Good luck!