Answer:
see explanation
Step-by-step explanation:
Using the exact values of the trigonometric ratios
sin60° =
, cos60° = ![\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D)
sin45° = cos45° = ![\frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
Using the sine ratio on the right triangle on the left
sin60° =
=
= ![\frac{\sqrt{3} }{2}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Csqrt%7B3%7D%20%7D%7B2%7D)
Cross- multiply
2a = 4
×
= 12 ( divide both sides by 2 )
a = 6
Using the cosine ratio on the same right triangle
cos60° =
=
= ![\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D)
Cross- multiply
2c = 4
( divide both sides by 2 )
c = 2![\sqrt{3}](https://tex.z-dn.net/?f=%5Csqrt%7B3%7D)
------------------------------------------------------------------------------------------
Using the sine/cosine ratios on the right triangle on the right
sin45° =
=
= ![\frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
Cross- multiply
b = 6![\sqrt{2}](https://tex.z-dn.net/?f=%5Csqrt%7B2%7D)
cos45° =
=
= ![\frac{1}{\sqrt{2} }](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D)
Cross- multiply
d = 6
( divide both sides by
)
d = 6
------------------------------------------------------------------------------------------------
a = 6, b = 6
, c = 2
, d = 6
Answer c or $31.08 is correct:)
Answer:
![\text{A)}\qquad (x-2)^2+(y+1)^2=16](https://tex.z-dn.net/?f=%5Ctext%7BA%29%7D%5Cqquad%20%28x-2%29%5E2%2B%28y%2B1%29%5E2%3D16)
Step-by-step explanation:
The formula for a circle of radius r centered at (h, k) is ...
(x -h)^2 +(y -k)^2 = r^2
Both of the given points are on the line y=-1. The distance between them is the difference of their x-coordinates, 2 -(-2) = 4. So, the radius of the circle is 4 and the equation becomes ...
(x -2)^2 +(y -(-1))^2 = 4^2
(x -2)^2 +(y +1)^2 = 16 . . . . . . . . . matches choice A
Answer:
10
Step-by-step explanation: