Answer:
Mass = 47.04 g
Volume = 23.94 L
Solution:
The equation for given reaction is as follow,
BaCO₃ + 2 HNO₃ → Ba(NO₃)₂ + CO₂ + H₂O
According to this equation,
197.34 g (1 mole) BaCO₃ produces = 44 g (1 mole) of CO₂
So,
211 g of BaCO₃ will produce = X g of CO₂
Solving for X,
X = (211 g × 44 g) ÷ 197.34 g
X = 47.04 g of CO₂
As we know,
44 g (1 mole) CO₂ at STP occupies = 22.4 L volume
So,
47.04 g of CO₂ will occupy = X L of Volume
Solving for X,
X = (47.04 g × 22.4 L) ÷ 44 g
X = 23.94 L Volume
the density of a black hole is 22.61 g/cm3 i think
Answer:

Explanation:
Hello,
In this case, for the given information, we can compute the rate of disappearance of NO₂ by using the following rate relationship:

Whereas it is multiplied by the the inverse of the stoichiometric coefficient of NO₂ in the reaction that is 2. Moreover, the subscript <em>f</em> is referred to the final condition and the subscript <em>0</em> to the initial condition, thus, we obtain:

Clearly, it turns out negative since the concentration is diminishing due to its consumption.
Regards.
Answer:
By weight they have the same mass, but the number of atoms is different
Explanation: