Answer:
1.67g H2CO3 are produced
Explanation:
Based on the reaction:
2NaHCO3 → Na2CO3 + H2CO3
<em>2 moles of NaHCO3 produce 1 mole of Na2CO3 and 1 mole of H2CO3</em>
To solve this question we need to find the moles of Na2CO3 = Moles of H2CO3. With their moles we can find the mass of H2CO3 as follows:
<em>Moles Na2CO3 -Molar mass: 105.99g/mol-</em>
2.86g Na2CO3 * (1mol/105.99g) = 0.02698 moles Na2CO3 = Moles H2CO3
<em>Mass H2CO3 -Molar mass: 62.03g/mol-</em>
0.02698 moles * (62.03g/mol) =
<h3>1.67g H2CO3 are produced</h3>
Answer:
2.08×10^24 atoms
Explanation:
set up a mole to atom ratio:
3.47moles 1 mole
------------------ = ----------------------------
x atoms 6.02×10^23 atoms
cross multiply:
3.47 mole × 6.02 × 10^23 = 2.08×10^24 atoms
I believe that this atom is chlorine and the atom has an overall charge of zero.
Chlorine is chemical element which is atomic number 17 in the periodic table. Each chlorine atom has 17 protons (positively charged) in the nucleus balanced by 17 electrons (negatively charged) in the energy shells ( thus an overall charge of zero)
Answer:
See explanation
Explanation:
When a beaker of ethanoic acid is placed in the refrigerator, its temperature drops and the vessel feels cool.
Now, when we mix ethanoic acid and sodium carbonate, an endothermic reaction occurs, fizzing is observed as carbon dioxide is given off and heat is lost to the surroundings causing the reaction vessel to feel cool to touch.
The difference between putting ethanoic acid in the refrigerator and adding sodium carbonate to the solution is that, in the former, no new substance is formed. The substance remains ethanoic acid when retrieved from the refrigerator. In the later case, new substances are formed. The substance is no more ethanoic acid because a chemical reaction has taken place.