Answer:
315.51g/mol
Explanation:
137(33 + (16.00 + 1.01) 2 + 8 [1.01 (2) + 16.00] = 315.51g/mol
Conductivity, malleability, and high melting points. Hope this helps :)
Answer:
<h2>6426000 mg</h2>
Explanation:
The mass of a substance when given the density and volume can be found by using the formula
mass = Density × volume
From the question
63 mL = 63 cm³
We have
mass = 102 × 63 = 6426
But 1 g = 1000 mg
6426 g = 6426000 mg
We have the final answer as
<h3>6,426,000 mg</h3>
Hope this helps you
Answer:
0.0177 L of nitrogen will be produced
Explanation:
The decomposition reaction of sodium azide will be:

As per the balanced equation two moles of sodium azide will give three moles of nitrogen gas
The molecular weight of sodium azide = 65 g/mol
The mass of sodium azide used = 100 g
The moles of sodium azide used = 
so 1.54 moles of sodium azide will give =
mol
the volume will be calculated using ideal gas equation
PV=nRT
Where
P = Pressure = 1.00 atm
V = ?
n = moles = 2.31 mol
R = 0.0821 L atm / mol K
T = 25 °C = 298.15 K
Volume = 
B. This is because the Hydrogen and Oxygen need balanced out.
Current-
C-1 | C-1
H-4 | H-2
O-2 | O-3
Adding a coefficient of 2 before oxygen in the reactants and H2O in the products would balance this equation
<span>CH4 + 2O2 → CO2 + 2H2O</span>
C-1 | C-1
H-4 | H-4
O-4 | O-4