Answer:
25%
Step-by-step explanation:
Percentages are one of several ways of describing quantities' relationships to one another. Specifying one number as a percentage of another means specifying the fraction of the second quantity the first comprises. The percentage value is the number that, divided by 100, equals that fraction. To express the percentage as a whole number, round it accordingly. Some applications, however, don't require percentages as exact whole figures.
Divide the first number the second. For instance, if you want to find what percentage 43 is out of 57, divide 43 by 57 to get 0.754386.
Answer: Yes, The relation is a function, they are the exact opposite.
Step-by-step explanation:
We are given two binomials: x+4 , x^2-9.
x+4 can't be factored. Therefore, it is a prime.
Let us work on x^2-9.
9 could be written as 3^2.
Therefore, x^2-9 = x^2 - 3^2.
Now, we can apply difference of the squares formula to factor it.
We know a^2 -b^2 = (a-b) (a+b).
Therefore, x^2 - 3^2 can be factored as (x-3) (x+3).
So, x^2-9 is not a prime binomial because it can be factored as (x-3) (x+3).
Answer:
a) 0.70
b) 0.82
Step-by-step explanation:
a)
Let M be the event that student get merit scholarship and A be the event that student get athletic scholarship.
P(M)=0.3
P(A)=0.6
P(M∩A)=0.08
P(not getting merit scholarships)=P(M')=?
P(not getting merit scholarships)=1-P(M)
P(not getting merit scholarships)=1-0.3
P(not getting merit scholarships)=0.7
The probability that student not get the merit scholarship is 70%.
b)
P(getting at least one of two scholarships)=P(M or A)=P(M∪A)
P(getting at least one of two scholarships)=P(M)+P(A)-P(M∩A)
P(getting at least one of two scholarships)=0.3+0.6-0.08
P(getting at least one of two scholarships)=0.9-0.08
P(getting at least one of two scholarships)=0.82
The probability that student gets at least one of two scholarships is 82%.