An example of a mechanical wave is a sound wave
Work done is given by 1/2kx^2
18 = 1/2*k*0.9*0.9
36 = k*0.81
44.4 = j/m^2
Answer:
The answer is V =delta U over q
Explanation:
Electric potential is defined as the magnitude of the electric field through the potential energy that a charge would have if placed at that point. Mathematically, the potential is defined with the following expression:

where:
V is the electric potential. Its unit is Julius by Coulomb (J/C).
Ep is the electric potential energy that has a charge
q is the charge
In the question Ep = ΔU
Answer:
you have gay
Explanation:
699999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999ooooooooooooooooooooooooooo
Answer:
0.255
Explanation:
The following data were obtained from the question:
Force (F) = 57 N
Mass (m) = 22.8 Kg
Coefficient of static friction (µ) =...?
Next, we shall determine the normal reaction (R). This is illustrated below:
Mass (m) = 22.8 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal reaction (R) =?
R = mg
R = 22.8 x 9.8
R = 223.44 N
Finally, we can obtain the coefficient of static friction (µ) as follow:
Force (F) = 57 N
Normal reaction (R) = 223.44 N
Coefficient of static friction (µ) =...?
F = µR
57 = µ x 223.44
Divide both side by 223.44
µ = 57/223.44
µ = 0.255
Therefore, the coefficient of static friction (µ) is 0.255.