Answer:
-8.4°C
Explanation:
From the principle of heat capacity.
The heat sustain by an object is given as;
H = m× c× (T2-T1)
Where H is heat transferred
m is mass of substance
T2-T1 is the temperature change from starting to final temperature T2.
c- is the specific heat capacity of ice .
Note : specific heat capacity is an intrinsic capacity of a substance which is the energy substained on a unit mass of a substance on a unit temperature change.
Hence ; 35= 1× c× ( T2-(-25))
35= c× ( T2+25)
35 =2.108×( T2+25)
( T2+25)= 35/2.108= 16.60°{ approximated to 2 decimal place}
T2= 16.60-25= -8.40°C
C, specific heat capacity of ice is =2.108 kJ/kgK{you can google that}
Earth’s tilt from its axis.
For explanation:
The angle in which Earth is at is 23.5°. This causes its tilt which affects how the Sun’s light hits Earth
Answer:
This property could be used to create technologically-advanced tools or machines that could easily locate the mineral deposits.
Explanation:
Mineral deposits are hard to find, unless you have the skill or the proper tools in locating them. This is the reason why many people are mining in order to explore the different areas where they could find these deposits.
If one would consider the property of minerals, such as being good conductors of heat and electricity,<u> then they could create a tool or machine that would aid in their exploration.</u> Inventors could probably come up with a sensitive detector which signals when it reaches an area of high heat and electric conductivity. Since most minerals such as <em>gold, silver, copper, galena, bornite </em>and the like have this property, then miners will have a lesser amount of time looking for them.
If this technology will be implemented, though, regulation policy must be strictly implemented because it might lead to<em> over-mining</em> thus leading to the depletion of mineral deposits.
Explanation:
It is given that,
Semi major axis of the Jupiter, 
Mass of the sun, 
(a) Let T is the period of Jupiter's orbit. It is given by :




(b) We know that,

or


T = 11.859 earth years
Hence, this is the required solution.