Answer:
The correct estimate of the amount generated to the local economy is $3,333,333.
Step-by-step explanation:
The amount the expected to be generated for the local economy = $3.3 million
The amount of salaries that will generate $3.3 million = $1 million
The percentage of the amount of the salaries and the subsequent earnings expected to be spent on the local community = 70%
Therefore, we have;
For a first amount of 1 million into the economy, the next amount to into the economy is 70/100 × 1 million = 700,000, then we have 70/100 × 700,000 and so on, which is a geometric sequence, with first term, a = $1 million, the common ratio, r = 70/100 = 0.7, the number of terms = Infinity = ∞
The sum of a geometric sequence to infinity is given as follows;

Substituting the known values gives;

Therefore, the correct estimate of the amount generated to the local economy by the $1 million salaries that will be paid = $3,333,333.
.