The previous part of the exercise says:
"<span>Engineers are designing a system by which a falling mass m imparts kinetic energy to a rotating uniform drum to which it is attached by thin, very light wire wrapped around the rim of the drum. There is no appreciable friction in the axle of the drum, and everything starts from rest. This system is being tested on Earth, but it is to be used on Mars, where the acceleration due to gravity is 3.71 m/s². In the Earth tests, when m is set to 18.0 kg and allowed to fall through 5.50 m, it gives 300.0 J of kinetic energy to the drum."
Since Kearth = Kmars, we have, for conservation of energy, that also the potential energies must be equal:
Uearth = Umars
which means:
m </span>· gearth · hearth = m · gmars <span>· hmars
we can solve for hmars:
hmars = (gearth / gmars) </span>· hearth
= (9.8 / 3.71) · 5.50
= 14.53m
Therefore, the correct answer will be: the mass would have to fall from an height of 14.53m.
An arrow pointing from the bottom of the ramp to the top, I assume it would be friction.
The electric field E of a charge is defined as E=F/Q where F is the Coulomb force and Q is the test charge.
E=(1/Q)*k*(q*Q)/r², where k=9*10^9 N*m²/C², q is the point charge, Q is the test charge and r is the distance between the charges.
So E=(k*q)/r²
When we input the numbers we get that electric field E of a point chage q is:
E=(9*10^9)*(5.4*10^-8)/0.2²=486/0.04=12150 N/C.
This is roughly E=12000 N/C =1.2*10^4 N/C
The correct answer is B.
Answer:
c. A, C
Explanation:
On equi-potential surface, fields are equal in magnitude at all points . If field is zero at all points , they will be equal so first option is correct.
Field is perpendicular to equipotential surface at all points.
Answer:
This question appear incomplete
Explanation:
This question appear incomplete because of the lack of options. However, a connected web of cells is generally referred to as the tissue. These cells are joined together by cell-cell adhesion (a form of bond) to form the tissue. The type of tissue being referred to here is the nervous tissue as this is the type of tissue present in the nervous system (including the central nervous system of which the brain is a part of).