Answer:
Tension on tendon = 1669800N
Explanation:
Detailed explanation and calculation is shown in the image below
One situation in which force is created is when an object is moving and a force is created to stop that movement. Second situation is when an object is moving circularly and a force is created to move it towards the middle of the circle. The third situation is when a force is created that goes in the same direction as an object that is in movement.
Electron<span>. the central part of an atom containing </span>protons<span> and </span>neutrons<span> ... which of the following is necessary to calculate the atomic </span>mass<span> of an element? ... which of the </span>statements correctly compares<span>the relative size of an ion to its neutral atom?</span>
Answer:
The kinetic energy of a body is the energy that it possessed due to its motion. Kinetic energy can be defined as the work needed to accelerate an object of a given mass from rest to its stated velocity. Kinetic energy depends upon the velocity and the mass of the body.
To reach a vertical height of 13.8 ft against gravity, which has an acceleration of 32 ft/s^2, the required vertical speed can be calculated from the equation:
vi^2 - vf^2 = 2*g*h
Given that it has vf = 0 (it is not moving vertically at its maximum height), g = 32, and h = 13.8, we can solve for vi:
vi^2 = 29.72 ft/s
This is only its vertical speed, so this is equivalent to its original speed multiplied by the sine of the angle:
29.72 ft/s = (v_original)*(sin 42.2<span>°</span>)
v_original = 44.24 ft/s
Converting to m/s, this can be divided by 3.28 to get 13.49 m/s.