When the child is moving, he/she has kinetic energy. For just a brief second before they move the other way, the child is not moving, but they have gravitational potential energy.
The child may need a push from time to time because friction with the air causes loss of energy.
Answer:
Input force of pulley system = 200 N
Explanation:
Given:
Mechanical advantage of pulley system = 5
Output force from pulley system = 1,000 N
Find;
Input force of pulley system
Computation:
Mechanical advantage = Output force / Input force
Mechanical advantage of pulley system = Output force from pulley system / Input force of pulley system
5 = 1,000 / Input force of pulley system
Input force of pulley system = 1,000 / 5
Input force of pulley system = 200 N
Answer:
F=ma is the relationship where, F is force, m is mass and a is acceleration.
Newton's second law states that the unbalanced force applied to the object accelerates the object which is directly proportional to the force and inversely to the mass.
If we apply force to a toy car then It will accelerate.
This is how Newton's second law of motion is verified.
Formula for terminal
velocity is:
Vt = √(2mg/ρACd)
<span>Vt = terminal velocity = ?
<span>m = mass of the falling object = 72 kg
<span>g = gravitational acceleration = 9.81 m/s^2
<span>Cd = drag coefficient = 0.80
<span>ρ = density of the fluid/gas = 1.2 kg/m^3</span>
<span>A = projected area of the object (feet first) = 0.21 m * 0.41
m = 0.0861 m^2
Therefore:</span></span></span></span></span>
Vt = √(2 * 72
* 9.81 / 1.2 * 0.0861 * 0.80)
<span>Vt = 130.73 m/s</span>