The given matrix equation is,
.
Multiplying the matrices with the scalars, the given equation becomes,
![\left[\begin{array}{cc}1.5x&9\\12&6\end{array}\right] +\left[\begin{array}{cc}y&4y\\3y&2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%269%5C%5C12%266%5Cend%7Barray%7D%5Cright%5D%20%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dy%264y%5C%5C3y%262y%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20%20)
Adding the matrices,
![\left[\begin{array}{cc}1.5x+y&9+4y\\12+3y&6+2y\end{array}\right] =\left[\begin{array}{cc}z&z\\6z&2\end{array}\right] \\](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1.5x%2By%269%2B4y%5C%5C12%2B3y%266%2B2y%5Cend%7Barray%7D%5Cright%5D%20%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dz%26z%5C%5C6z%262%5Cend%7Barray%7D%5Cright%5D%20%20%5C%5C%20)
Matrix equality gives,

Solving the equations together,

We can see that the equations are not consistent.
There is no solution.
Answer:
he spent $68 without the fees and $32 on fees
Step-by-step explanation:
Answer:


Now, add these two equations.
You get,



Given,




You can test this to the other equation as well.


Hence, the two numbers are 14 and 10.
Answer:
The residual value is -0.75
Step-by-step explanation:
we know that
The residual value is the observed value minus the predicted value.
RESIDUAL VALUE=[OBSERVED VALUE-PREDICTED VALUE]
where
Predicted value.--> the predicted value given the current regression equation
Observed value. --> The observed value for the dependent variable.
in this problem
we have the point (1,4)
so
The observed value is 4
<em>Find the predicted value for x=1 </em>

predicted value is 4.75
so
RESIDUAL VALUE=(4-4.75)=-0.75
Answer:
v= 1.7in
Step-by-step explanation: