Answer:
56% ≤ p ≤ 70%
Step-by-step explanation:
Given the following :
Predicted % of votes to win for candidate A= 63%
Margin of Error in prediction = ±7%
Which inequality represents the predicted possible percent of votes, x, for candidate A?
Let the interval = p
Hence,
|p - prediction| = margin of error
|p - 63%| = ±7%
Hence,
Upper boundary : p = +7% + 63% = 70%
Lower boundary : p = - 7% + 63% = 56%
Hence,
Lower boundary ≤ p ≤ upper boundary
56% ≤ p ≤ 70%
Answer:
1. Slide over the Y-Axis
2. Reflection over the Y-Axis
3. Reflection over the y axis first as well as a rotation
Answer:
Algebra is user in business/finance management, software development, coding, landscaping plans, and nearly every form of engineering. The integrity of society requires all sorts of intuitive math, and the device you are typing on as well as the coding of this website relied on it was well.
9514 1404 393
Answer:
a) E = 6500 -50d
b) 5000 kWh
c) the excess will last only 130 days, not enough for 5 months
Step-by-step explanation:
<u>Given</u>:
starting excess (E): 6500 kWh
usage: 50 kWh/day (d)
<u>Find</u>:
a) E(d)
b) E(30)
c) E(150)
<u>Solution</u>:
a) The exces is linearly decreasing with the number of days, so we have ...
E(d) = 6500 -50d
__
b) After 30 days, the excess remaining is ...
E(30) = 6500 -50(30) = 5000 . . . . kWh after 30 days
__
c) After 150 days, the excess remaining would be ...
E(150) = 6500 -50(150) = 6500 -7500 = -1000 . . . . 150 days is beyond the capacity of the system
The supply is not enough to last for 5 months.
Answer:
3/5
Step-by-step explanation:
Slope=

slope =

=
