Answer:
WOMP WOMP WOMP!!!
Step-by-step explanation:
Multiply the original DE by xy:
xy2(1+x2y4+1−−−−−−−√)dx+2x2ydy=0(1)
Let v=xy2, so that dv=y2dx+2xydy. Then (1) becomes
x(y2dx+2xydy)+xy2x2y4+1−−−−−−−√dxxdv+vv2+1−−−−−√dx=0=0
This final equation is easily recognized as separable:
dxxln|x|+CKxvKx2y2−1K2x4y4−2Kx2y2y2=−dvvv2+1−−−−−√=ln∣∣∣v2+1−−−−−√+1v∣∣∣=v2+1−−−−−√+1=x2y4+1−−−−−−−√=x2y4=2KK2x2−1integrate both sides
12.
It is easy all you have to do is 15-3 because 1+2=3
Omg I wish I could help I am not in this top level ♂️