Answer:
I mean ig it is, but i dk
Explanation:
<u>Answer:</u> The number of moles of HI in the solution is
moles.
<u>Explanation:</u>
We are given:

To calculate the concentration of a substance, we use the equation:
......(1)
- Concentration of ammonia:
![[NH_3]=\frac{0.405mol}{4.90L}=0.083mol/L](https://tex.z-dn.net/?f=%5BNH_3%5D%3D%5Cfrac%7B0.405mol%7D%7B4.90L%7D%3D0.083mol%2FL)
- Concentration of ammonium iodide:
![[NH_4I]=\frac{1.45mol}{4.90L}=0.30mol/L](https://tex.z-dn.net/?f=%5BNH_4I%5D%3D%5Cfrac%7B1.45mol%7D%7B4.90L%7D%3D0.30mol%2FL)
For the given chemical reaction:

The expression of
for above equation follows:
![K_c=\frac{[HI][NH_3]}{[NH_4I]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BHI%5D%5BNH_3%5D%7D%7B%5BNH_4I%5D%7D)
Putting values in above equation, we get:
![7.0\times 10^{-5}=\frac{[HI]\times 0.083}{0.30}](https://tex.z-dn.net/?f=7.0%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%5BHI%5D%5Ctimes%200.083%7D%7B0.30%7D)
![[HI]=2.53\times 10^{-4}](https://tex.z-dn.net/?f=%5BHI%5D%3D2.53%5Ctimes%2010%5E%7B-4%7D)
Calculating the moles of hydrogen iodide by using equation 1, we get:

Hence, the number of moles of HI in the solution is
moles.
Hello! Your question seems incomplete, still I will try to answer it in a general way. As shown in in equation 22 KJ heat is absorbed during the reaction so it is endothermic reaction.
Effect of Temperature:
According to Le Chatelier's principle, by increasing temperature the equilibrium will shift in the forward direction hence more nitrogen and hydrogen will produce.
Effect of Pressure:
It is evident from the reaction that there is an increase in volume in the formation of N2 and H2 (4 moles in whole), Hence, decrease in pressure on this system in equilibrium state will adjust itself in a direction in which the volume is increased i.e. formation of N2 and H2.
Effect of Concentration:
Increasing concentration of NH3, removal of N2 or removal of H2 will shift the equilibrium in forward direction, Hence more product is formed.
Answer : The number of moles of
produced will be, 0.241 moles.
Solution : Given,
Mass of Fe = 27.0 g
Molar mass of
= 56 g/mole
First we have to calculate the moles of
.

Now we have to calculate the moles of 
The balanced chemical reaction is,

From the reaction, we conclude that
As, 4 mole of
react to give 2 mole of 
So, 0.482 moles of
react to give
moles of 
Thus, the number of moles of
produced will be, 0.241 moles.
The answer is 44.0095. We assume you are converting between grams CO2 and mole.