1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nydimaria [60]
2 years ago
14

X - 4y = 12 X - 5y = 15 PLS HELP ME SOLVE USING ELIMINATION

Mathematics
1 answer:
balu736 [363]2 years ago
7 0

Answer:

(0, -3)

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations: BPEMDAS
  • Equality Properties

<u>Algebra I</u>

  • Solving systems of equations using substitution/elimination

Step-by-step explanation:

<u>Step 1: Define systems</u>

x - 4y = 12

x - 5y = 15

<u>Step 2: Solve for </u><em><u>y</u></em>

<em>Elimination</em>

  1. Subtract 2 equations:                    y = -3

<u>Step 3: Solve for </u><em><u>x</u></em>

  1. Define original equation:                    x - 4y = 12
  2. Substitute in <em>y</em>:                                     x - 4(-3) = 12
  3. Multiply:                                                x + 12 = 12
  4. Subtract 12 on both sides:                  x = 0
You might be interested in
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
4-17 (-6)-3<br> Pls help <br> I know it equals -10 but I need a step by step answer
Elza [17]

Answer:

-10

Step-by-step explanation:

4-17-(-6)-3\\\\=4-17+6-3\\\\=(4+6)+(-17-3)\\\\=10+(-20)\\\\=10-20\\\\=-10

step two is the rule of signs for multiplication

6 0
2 years ago
What is 24a2b3-16ab2 factorised
oee [108]

Answer:

8ab^2(3ab - 2).

Step-by-step explanation:

24a^2b^3 - 16ab^2

= 8ab^2(3ab - 2).

7 0
3 years ago
If each cat population doubles by 2010, which value will be closest to the average pet cat population for these countries in 201
kenny6666 [7]
It would be c i think
6 0
3 years ago
Read 2 more answers
What is the fraction and decimal for 71%
Nadusha1986 [10]
The fraction is : 71/100
The decimal is : 0.71
3 0
3 years ago
Read 2 more answers
Other questions:
  • Maggie earns money from working at the pet store and answering phones. She earns $10 each hour she works at the pet store and $0
    7·1 answer
  • 20 + g + g =14 <br><br> I don't understand please help
    9·1 answer
  • Equivalent decimal are decimal that have the same value. <br><br>True<br>Or<br>False
    12·1 answer
  • WHAT IS THE PRIME FACTORIZATION FOR ONE BILLION
    10·1 answer
  • When we are approximating an irrational number we place the number under the square root between two consecutive
    11·1 answer
  • X=2y-1 <br> 3x+4y=11<br> Need help solving
    10·1 answer
  • Please answer both ASAP (middle school) (probability)
    7·1 answer
  • A baseball player got 102 hits in the last 300 times at bat. Explain how you would find the percent of times at bat.​
    9·2 answers
  • Water boils at 100C which's 400% more than my room temperature. so what's my room temperature
    6·1 answer
  • For a trip, Evelyn packed 6 blouses, 5 pairs of shorts, 3 pairs of jeans, and 1 skirt. Find the ratio of pairs of jeans to the t
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!