Answer:
Company one charges $11 + $0.16 per min.
Then if you talk for x minutes, the cost will be:
C₁(x) = $11 + ($0.16 per min)*x
For company two, the prize is $20 + $0.11 per min, and if yo talk for x minutes, the cost will be:
C₂(x) = $20 + ($0.11 per min)*x
Now we want to find the value of x, the number of minutes, such that the cost is the same with both companies.
C₁(x) = C₂(x)
$11 + ($0.16 per min)*x = $20 + ($0.11 per min)*x
($0.16 per min)*x - ($0.11 per min)*x = $20 - $11
($0.05 per min)*x = $9
x = $9/($0.05 per min) = 180 mins
If you speak for 180 minutes, the cost is the same in both companies.
Answer:
y increases by 2
Step-by-step explanation:
Answer:
2
Step-by-step explanation:
you add 1 to 1 and that gives you 2
<u>Part 1) </u>To find the measure of ∠A in ∆ABC, use
we know that
In the triangle ABC
Applying the law of sines

in this problem we have

therefore
<u>the answer Part 1) is</u>
Law of Sines
<u>Part 2) </u>To find the length of side HI in ∆HIG, use
we know that
In the triangle HIG
Applying the law of cosines

In this problem we have
g=HI
G=angle Beta
substitute


therefore
<u>the answer Part 2) is</u>
Law of Cosines
Um i think that the answer is c.12.46