Answer:
It is direct proportionality. The greater the mass, the greater is the gravitational potential energy. The equation for GPE is : GPE = mgh, where m is the mass, g is the acceleration due to gravity, and h is the height above the ground. As you can see GPE is directly proportional to mass, and height. KT.
Explanation:
Gravitational potential energy is a function of both the mass of your system and the mass of the thing generating the gravity field around your system.
The relationship is linear, which means that if you multiply or divide one of the masses by some number but leave everything else the same, you multiply or divide the potential energy by the same number. A 3kg mass has three times the gravitation potential energy of a 1kg mass, if placed in the same location.
Answer:
90,000 J
Explanation:
Kinetic energy can be found using the following formula.

where <em>m </em>is the mass in kilograms and <em>v</em> is the velocity in m/s.
We know the object has a mass of 50 kilograms. We also know it is a traveling at a rate of 60 m/s. Velocity is the speed of something, so the velocity of the object is 60 m/s.
<em>m</em>=50
<em>v</em>=60
Substitute these values into the formula.

First, evaluate the exponent: 60^2. 60^2 is the same as multiplying 60, 2 times.
60^2=60*60=3,600

Multiply 50 and 3,600

Multiply 1/2 and 3,600, or divide 3,600 by 2.

Add appropriate units. Kinetic energy uses Joules, or J.

The kinetic energy of the object is 90,000 Joules
<span>There is no special name for that. Physics is usually just concerned with "forces", and doesn't specify whether the force pushes or pulls. If you want to be more specific, you can just call it a "pulling force".
I hoped this was satisfying!:)</span>
Answer:
10000 J or 10 KJ
Explanation:
power = workdone/time taken
400 = workdone/25
workdone = 400 * 25
=10000 J