Answer:Kinetic energy is the energy of motion. All moving objects have kinetic energy. When an object is in motion, it changes its position by moving in a direction: up, down, forward, or backward. 3. A force is a push or pull that causes an object to move, change direction, change speed, or stop.
Explanation: Not sure if that's what you meant but that's the answer I can give you.
Answer:False
Explanation:
Work is being done on a body when it causes displacement of body on the application of force

When we pull the door by a force it causes zero displacements of the door. So we can say that work done on it is zero.
Thus the above-given statement is false
Answer:
The velocity of the ball before it hits the ground is 381.2 m/s
Explanation:
Given;
time taken to reach the ground, t = 38.9 s
The height of fall is given by;
h = ¹/₂gt²
h = ¹/₂(9.8)(38.9)²
h = 7414.73 m
The velocity of the ball before it hits the ground is given as;
v² = u² + 2gh
where;
u is the initial velocity of the on the root = 0
v is the final velocity of the ball before it hits the ground
v² = 2gh
v = √2gh
v = √(2 x 9.8 x 7414.73 )
v = 381.2 m/s
Therefore, the velocity of the ball before it hits the ground is 381.2 m/s
4. The Coyote has an initial position vector of
.
4a. The Coyote has an initial velocity vector of
. His position at time
is given by the vector

where
is the Coyote's acceleration vector at time
. He experiences acceleration only in the downward direction because of gravity, and in particular
where
. Splitting up the position vector into components, we have
with


The Coyote hits the ground when
:

4b. Here we evaluate
at the time found in (4a).

5. The shell has initial position vector
, and we're told that after some time the bullet (now separated from the shell) has a position of
.
5a. The vertical component of the shell's position vector is

We find the shell hits the ground at

5b. The horizontal component of the bullet's position vector is

where
is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for
:
