Required pH = 4.93
- OH⁻ from NaOH reacts with CH₃COOH giving CH₃COO⁻ and H₂O
- Let the volume of 3.5 M NaOH be x ml
Moles of NaOH = Moles of OH⁻ = Molarity * x ml = 3.5x mmol
- The reaction table for moles is as follows:
CH₃COOH + OH⁻ → CH₃COO⁻ + H₂O
Initial 60 3.5x 40
Change -3.5x -3.5x +3.5x
Final (60-3.5x) 0 (40+3.5x)
- Substitute in Henderson equation and solve for x:
pH = pKa + log
![\frac{[CH_{3}COO^-]}{[CH_3COOH]}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%5BCH_%7B3%7DCOO%5E-%5D%7D%7B%5BCH_3COOH%5D%7D%20)
4.93 = 4.76 + log

0.17 = log


x = 5.62 ml NaOH required
Answer is: b. more than 7.
The endpoint is the point at which the indicator changes colour in a colourimetric titration and that is point when titration must stop.
For example, basic salt sodium acetate CH₃COONa is formed from the reaction between weak acid (in this example acetic acid CH₃COOH) and strong base (in this example sodium acetate NaOH).
Balanced chemical reaction of acetic acid and sodium hydroxide:
CH₃COOH(aq) + NaOH(aq) → CH₃COONa(aq) + H₂O(l).
Neutralization is is reaction in which an acid (in this example vinegar or acetic acid CH₃COOH) and a base react quantitatively with each other.
The side of each water molecule with the oxygen atom uncovered will be marginally negative.
The side of each water molecule with the hydrogen atoms uncovered will be marginally positive.
So the two Cl{-} particles will be pulled in to the biggest number of positive charges, which happen in the boxes on the upper right and lower left.
The two Na{+} particles will be pulled in to the biggest number of negative charges, which happen in the boxes on the upper left and lower right.
Answer:
The molar concentration of a solution made with 3.744 g of Mg(NO₃)₂ dissolved in enough water to make 50.0 mL of solution is 
Explanation:
Molarity or Molar Concentration is the number of moles of solute that are dissolved in a certain volume.
The molarity of a solution is calculated by dividing the moles of the solute by the volume of the solution:

In this case:
- Mg: 24.3 g/mole
- N: 14 g/mole
- O: 16 g/mole
So, the molar mass of Mg(NO₃)₂ is:
Mg(NO₃)₂= 24.3 g/mole + 2*(14 g/mole + 3*16 g/mole)= 148.3 g/mole
So, if you have 3.744 g of Mg(NO₃)₂, you can apply the following rule of three: if 148.3 grams of Mg(NO₃)₂ are present in 1 mole, 3.744 grams in how many moles are present?

moles= 0.025
Then you have:
- number of moles=0.025
- volume= 50 mL= 0.05 L (being 1,000 mL= 1 L)
Replacing in the definition of molarity:

you get:

<u><em>The molar concentration of a solution made with 3.744 g of Mg(NO₃)₂ dissolved in enough water to make 50.0 mL of solution is </em></u>
<u><em></em></u>