<span>Answer:
Some metals have the ability to form differently charged ions. For example, iron can form
2
+
or
3
+
ions. If you simply gave the name iron chloride, you would not know which charge the iron ion possessed.
A Roman numeral is to indicate the charge of the iron.
Iron (
II
) means the iron has a
2
+
charge
Iron (
III
) means that the iron has a
3
+
charge
So, iron (
II
) oxide would have a chemical formula of
FeO
.
(The oxide ion has a
2
â’
charge to balance the
2
+
of the iron to form a neutral compound.)
Iron (
III
) oxide would have a chemical formula of
Fe
2
O
3
(Here you need to find the common multiple of 6, so two iron ions with a
3
+
charge will balance the charge of three oxide ions with a
2
+
charge.)</span>
A combustion reaction is a reaction that reacts in the presence of oxygen molecules. Methane will release -3115 kJ/mol of heat.
<h3>What is a combustion reaction?</h3>
A combustion reaction includes the reaction between the chemical reactant and oxygen molecule to produce the product. The combustion reaction between methane and oxygen is given as:
CH₄(g) + 2O₂ (g) → CO₂(g) + 2H₂O (l), ΔH = -890 kJ/mol
The stoichiometry coefficient from the reaction gives 1 mole of methane releases -890 kJ/mol enthalpy.
So, 3.5 moles methane will release = 3.5 × -890 = -3115 kJ/mol
Therefore, -3115 kJ/mol of heat is released.
Learn more about combustion reaction here:
brainly.com/question/27823881
#SPJ1
Answer:
0.08911760029829444
Explanation:
hop that this what you wanted
Answer: 72.93 litres
Explanation:
Given that:
Volume of gas (V) = ?
Temperature (T) = 24.0°C
Convert 24.0°C to Kelvin by adding 273
(24.0°C + 273 = 297K)
Pressure (P) = 1.003 atm
Number of moles (n) = 3 moles
Molar gas constant (R) is a constant with a value of 0.0821 atm L K-1 mol-1
Then, apply ideal gas equation
pV = nRT
1.003 atm x V = 3.00 moles x 0.0821 atm L K-1 mol-1 x 297K
1.003 atm•V = 73.15 atm•L
Divide both sides by 1.003 atm
1.003 atm•V/1.003 atm = 73.15 atm•L/1.003 atm
V = 72.93 L
Thus, the volume of the gas is 72.93 litres
Answer:
10.78 → 4 significant figures, pH = 10.78 → [H⁺] = 1.66ₓ10⁻¹¹ M
6.78 → 3 significant figures, pH = 6.78 → [H⁺] = 1.66ₓ10⁻⁷ M
0.78 → 2 significant figures, pH = 0.78 → [H⁺] = 0.166 M
pH always can be expressed by at least 4 significant figures. The [H⁺], can be expressed by, at least 3 significant figures
Explanation:
Significant figures are the numbers of a measurement that have certainty plus a doubtful number (it is associated with the uncertainty in the measurement). For example, if we measure a paper with a ruler and the ruler measures up to centimeters we can say that the paper is 7.5 cm long, with which we know that the paper is 7 cm + 0.5 cm which we associate with uncertainty. In this case we talk about two significant figures. If the sheet measured 7.57 cm we would already be talking about a more precise measurement and in this case with 3 significant figures.
10.78 → 4 significant figures
6.78 → 3 significant figures
0.78 → 2 significant figures
To determine [H⁺], we apply 10^-pH
10⁻¹⁰°⁷⁸ = 1.66ₓ10⁻¹¹ M
10⁻⁶°⁷⁸ = 1.66ₓ10⁻⁷ M
10⁻⁰°⁷⁸ = 0.166 M