Answer:
They have the same number of electron energy levels.
They transition from a metal to noble gas.
Explanation:
Periods in the periodic table of elements refer to elements in the same row. All the elements in a certain row of the periodic table;
have the same number of electron energy levels.
transition from a metal to noble gas.
Answer:
Re=309926.13
Explanation:
density=92.8lbm/ft3*(0.45kg/1lbm)*(1ft3/0.028m3)=1491.43kg/m3
viscosity=4.1cP*((1*10-3kg/m*s)/1cP)=0.0041kg/m*s
velocity=237ft/min*(1min/60s)*(0.3048m/1ft)=1.2m/s
diameter=28inch*(0.0254m/1inch)=0.71m
Re=(density*velocity*diameter)/viscosity=(1491.43kg/m3*1.2m/s*0.71m)/0.0041kg/m*s
Re=309926.13
Hydrochloric acid is usually purchased in a concentrated form that is 37.0% HCl by mass and has a density of 1.20g/mL. Calculate the molarity of the concd HCl.
1.20 g/mL x 1000 mL x 0.37 x (1/36.5) = about 12 M or so but you do it exactly.
Then mL x M = mL x M
mL x 12 M = 2800 mL x 0.475
Solve for mL of the concd HCl solution.
Answer:
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
ppm (parts per million) concentration is defined as the mass (in milligrams) of a substance dissolved in one liter of solution.
In our case we have:
mass of MgBr₂ = 12.41 g
volume of water (which is equal to the final solution volume) = 2.55 L
Now we devise the following reasoning:
if 12.41 g of MgBr₂ are dissolved in 2.55 L of water
then X g of MgBr₂ are dissolved in 1 L of water
X = (1 × 12.41) / 2.55 = 4.867 g of MgBr₂
if in 184 g (1 mole) of MgBr₂ we have 160 g of Br⁻
then in 4.867 g of MgBr₂ we have Y g of Br⁻
Y = (4.867 × 160) / 184 = 4.232 g of bromide (Br⁻)
4.232 g of bromide (Br⁻) = 4234 mg of bromide (Br⁻)
concentration of bromide (Br⁻) = 4234 mg/L = 4234 ppm
Explanation:
Method of prepration of sodium thiosulphate - definition
In the laboratory, this salt can be prepared by heating an aqueous solution of sodium sulphite with sulphur or by boiling aqueous NaOH and sulfur according to this equation:
