The smallest marking would be 1/10th of a centimeter
Answer: 
Explanation:

where,
= boiling point of solution = ?
= boiling point of solvent (X) = 
= freezing point constant = 
m = molality
i = Van't Hoff factor = 1 (for non-electrolyte like urea)
= mass of solute (urea) = 29.82 g
= mass of solvent (X) = 500.0 g
= molar mass of solute (urea) = 60 g/mol
Now put all the given values in the above formula, we get:


Therefore, the freezing point of solution is 
Answer:
TATGGCGTT
Explanation:
Complimentary base pairs:
A-T
C-G
Use the other letter for complimentary strands
Answer:

Explanation:
We are asked to find how many kilojoules of energy would be required to heat a block of aluminum.
We will use the following formula to calculate heat energy.

The mass (m) of the aluminum block is 225 grams and the specific heat (c) is 0.897 Joules per gram degree Celsius. The change in temperature (ΔT) is the difference between the final temperature and the initial temperature.
- ΔT = final temperature - inital temperature
The aluminum block was heated from 23.0 °C to 73.5 °C.
- ΔT= 73.5 °C - 23.0 °C = 50.5 °C
Now we know all three variables and can substitute them into the formula.
- m= 225 g
- c= 0.897 J/g° C
- ΔT= 50.5 °C

Multiply the first two numbers. The units of grams cancel.



Multiply again. This time, the units of degrees Celsius cancel.


The answer asks for the energy in kilojoules, so we must convert our answer. Remember that 1 kilojoule contains 1000 joules.

Multiply by the answer we found in Joules.




The original values of mass, temperature, and specific heat all have 3 significant figures, so our answer must have the same. For the number we found, that is the tneths place. The 9 in the hundredth place tells us to round the 1 up to a 2.

Approximately <u>10.2 kilojoules</u> of energy would be required.