Answer:
33.48 V
Explanation:
Parameters given:
Number of turns, N = 420
Magnetic field strength, B = 0.055 T
Area, A = 0.065 m²
Angular velocity, ω = 22.3 rad/s
EMF induced in a coil is given as:
EMF = -dΦ/dt
where Φ = magnetic flux
Magnetic flux, Φ, is given as:
Φ = B * N * A * cosωt
EMF = -d( B * N * A * cosωt) / dt
EMF = B * N * A * ω * sinωt
where ωt = 90°
Therefore:
EMF = 0.055 * 420 * 0.065 * 22.3 * sin90°
EMF = 33.48 V
Answer:
Its sure 2nd gare beaciuse
Explanation:
of tobi was obito was tobi his som came and start doing enginner but he faild so i gave him answer he repiled oh baby baby oh
The answer would be B. Magnetic fields are invisible they cannot be directly observed
Answer:
a)Yes will deform plastically
b) Will NOT experience necking
Explanation:
Given:
- Applied Force F = 850 lb
- Diameter of wire D = 0.15 in
- Yield Strength Y=45,000 psi
- Ultimate Tensile strength U = 55,000 psi
Find:
a) Whether there will be plastic deformation
b) Whether there will be necking.
Solution:
Assuming a constant Force F, the stress in the wire will be:
stress = F / Area
Area = pi*D^2 / 4
Area = pi*0.15^2 / 4 = 0.0176715 in^2
stress = 850 / 0.0176715
stress = 48,100.16 psi
Yield Strength < Applied stress > Ultimate Tensile strength
45,000 < 48,100 < 55,000
Hence, stress applied is greater than Yield strength beyond which the wire will deform plasticly but insufficient enough to reach UTS responsible for the necking to initiate. Hence, wire deforms plastically but does not experience necking.
Answer:
Explanation:
Velocity is defined as the rate of change of displacement.
velocity is a vector quantity, that means it requires both magnitude and direction to completely explain the velocity.
For example, the velocity is 5 ms due east, it means an object is moving with speed 5 ms in the direction of east. We can say that the object covers the displacement of 5 m in one second due east.