(a) 6.04 rev/s
The speed of the ball is given by:

where
is the angular speed
r is the distance of the ball from the centre of the circle
In situation 1), we have

r = 0.600 m
So the speed of the ball is

In situation 2), we have

r = 0.900 m
So the speed of the ball is

So, the ball has greater speed when rotating at 6.04 rev/s.
(b) 
The centripetal acceleration of the ball is given by

where
v is the speed
r is the distance of the ball from the centre of the trajectory
For situation 1),
v = 30.6 m/s
r = 0.600 m
So the centripetal acceleration is

(c) 
For situation 2 we have
v = 34.1 m/s
r = 0.900 m
So the centripetal acceleration is

<span>There are Billions and billions of galaxies in the universe containing Trillions and trillions of stars in each galaxy.</span>
Answer:
330.24 Hz
Explanation:
Given:
Frequency, f = 320 Hz
L1 = 25.8 cm
L2 = 78.4 cm
L3 = 131.1 cm
Let the wavelength be λ
Then, L1 which is the length of the column of air is λ/4.
λ/4 = 25.8 cm
λ = 25.8 × 4 = 103.2 cm = 1.032 m
Then, speed of sound in air is:
v = λ f
⇒ v = 1.032 × 320 Hz
⇒ v = 330.24 m/s
All of the electromagnetic energy radiated from the sun (and from
other stars) is the product of nuclear fusion in its core.
Assumes the shape and volume of its container
<span>particles can move past one another</span>