The balanced equation for the above neutralisation reaction is as follows;
Ca(OH)₂ + 2HCl ----> CaCl₂ + 2H₂O
Stoichiometry of Ca(OH)₂ to HCl is 1:2
number of Ca(OH)₂ moles reacted - 0.250 mol/L x 20.0 x 10⁻³ L = 5.00 x 10⁻³ mol
according to molar ratio of 1:2
number of HCl moles required = 2 x number of Ca(OH)₂ moles reacted
number of HCl moles = 5.00 x 10⁻³ x 2 = 10.0 x 10⁻³ mol
molarity of HCl solution - 0.250 M
there are 0.250 mol in volume of 1 L
therefore 10.0 x 10⁻³ mol in - 10.0 x 10⁻³ mol / 0.250 mol/L = 40.0 mL
40.0 mL of 0.250 M HCl is required
Answer:
Q.1
Given-
Volume of solution-1 L
Molarity of solution -6M
to find gms of AgNO3-?
Molarity = number of moles of solute/volume of solution in litre
number of moles of solute = 6×1= 6moles
one moles of AgNO3 weighs 169.87 g
so mass of 6 moles of AgNO3 = 169.87×6=1019.22
so you need 1019.22 g of AgNO3 to make 1.0 L of a 6.0 M solution
30 kg m/s
momentum = mass x velocity = 10 x 3 m/s =30 kg m/s
Explanation:
The given data is as follows.
Air is at
and 14.6 psia.
= 0.00015 ft, Flow rate, (Q) = 48000 
(a) Formula to calculate hydraulic radius
is as follows.

= 
=
ft
Formula for equivalent diameter is as follows.

=
=
ft
(b) Formula for velocity floe is as follows.
Q = VA
V = 
=
ft/min
= 24000 ft/min
(c) Formula to calculate Reynold's number is as follows.
= 
=
(as
and
= 0.0443 lb/ft. hr)
= 53742.66 hr/min
As 1 hr = 10 min. So, 
= 3224559.6
(d) Formula to calculate pressure drop
is as follows.

Putting the given values into the above formula as follows.

= 
= 6.238 